期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Design and Implementation of Weibo Sentiment Analysis Based on LDA and Dependency Parsing 被引量:5
1
作者 Yonggan Li Xueguang Zhou +1 位作者 Yan Sun Huanguo Zhang 《China Communications》 SCIE CSCD 2016年第11期91-105,共15页
Information content security is a branch of cyberspace security. How to effectively manage and use Weibo comment information has become a research focus in the field of information content security. Three main tasks i... Information content security is a branch of cyberspace security. How to effectively manage and use Weibo comment information has become a research focus in the field of information content security. Three main tasks involved are emotion sentence identification and classification,emotion tendency classification,and emotion expression extraction. Combining with the latent Dirichlet allocation(LDA) model,a Gibbs sampling implementation for inference of our algorithm is presented,and can be used to categorize emotion tendency automatically with the computer. In accordance with the lower ratio of recall for emotion expression extraction in Weibo,use dependency parsing,divided into two categories with subject and object,summarized six kinds of dependency models from evaluating objects and emotion words,and proposed that a merge algorithm for evaluating objects can be accurately evaluated by participating in a public bakeoff and in the shared tasks among the best methods in the sub-task of emotion expression extraction,indicating the value of our method as not only innovative but practical. 展开更多
关键词 information security information content security sentiment analysis dependency parsing emotion tendency classification emotion expression extraction
在线阅读 下载PDF
Dependency-Based Local Attention Approach to Neural Machine Translation 被引量:3
2
作者 Jing Qiu Yan Liu +4 位作者 Yuhan Chai Yaqi Si Shen Su Le Wang Yue Wu 《Computers, Materials & Continua》 SCIE EI 2019年第5期547-562,共16页
Recently dependency information has been used in different ways to improve neural machine translation.For example,add dependency labels to the hidden states of source words.Or the contiguous information of a source wo... Recently dependency information has been used in different ways to improve neural machine translation.For example,add dependency labels to the hidden states of source words.Or the contiguous information of a source word would be found according to the dependency tree and then be learned independently and be added into Neural Machine Translation(NMT)model as a unit in various ways.However,these works are all limited to the use of dependency information to enrich the hidden states of source words.Since many works in Statistical Machine Translation(SMT)and NMT have proven the validity and potential of using dependency information.We believe that there are still many ways to apply dependency information in the NMT structure.In this paper,we explore a new way to use dependency information to improve NMT.Based on the theory of local attention mechanism,we present Dependency-based Local Attention Approach(DLAA),a new attention mechanism that allowed the NMT model to trace the dependency words related to the current translating words.Our work also indicates that dependency information could help to supervise attention mechanism.Experiment results on WMT 17 Chineseto-English translation task shared training datasets show that our model is effective and perform distinctively on long sentence translation. 展开更多
关键词 Neural machine translation attention mechanism dependency parsing
在线阅读 下载PDF
Construction method of Chinese sentential semantic structure 被引量:2
3
作者 罗森林 韩磊 +1 位作者 潘丽敏 魏超 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期110-117,共8页
A new method is proposed for constructing the Chinese sentential semantic structure in this paper. The method adopts the features including predicates, relations between predicates and basic arguments, relations betwe... A new method is proposed for constructing the Chinese sentential semantic structure in this paper. The method adopts the features including predicates, relations between predicates and basic arguments, relations between words, and case types to train the models of CRF + + and de- pendency parser. On the basis of the data set in Beijing Forest Studio-Chinese Tagged Corpus ( BFS- CTC), the proposed method obtains precision value of 73.63% in open test. This result shows that the formalized computer processing can construct the sentential semantic structure absolutely. The features of predicates, topic and comment extracted with the method can be applied in Chinese in- formation processing directly for promoting the development of Chinese semantic analysis. The method makes the analysis of sentential semantic analysis based on large scale of data possible. It is a tool for expanding the corpus and has certain theoretical research and practical application value. 展开更多
关键词 sentential semantic structure Chinese sentential semantic model conditional randomfield dependency parse
在线阅读 下载PDF
A Novel Feature-based Method for Sentiment Analysis of Chinese Product Reviews 被引量:5
4
作者 LIU Lizhen SONG Wei +2 位作者 WANG Hanshi LI Chuchu LU Jingli 《China Communications》 SCIE CSCD 2014年第3期154-164,共11页
Sentiment analysis of online reviews and other user generated content is an important research problem for its wide range of applications.In this paper,we propose a feature-based vector model and a novel weighting alg... Sentiment analysis of online reviews and other user generated content is an important research problem for its wide range of applications.In this paper,we propose a feature-based vector model and a novel weighting algorithm for sentiment analysis of Chinese product reviews.Specifically,an opinionated document is modeled by a set of feature-based vectors and corresponding weights.Different from previous work,our model considers modifying relationships between words and contains rich sentiment strength descriptions which are represented by adverbs of degree and punctuations.Dependency parsing is applied to construct the feature vectors.A novel feature weighting algorithm is proposed for supervised sentiment classification based on rich sentiment strength related information.The experimental results demonstrate the effectiveness of the proposed method compared with a state of the art method using term level weighting algorithms. 展开更多
关键词 sentiment analysis sentimentstrength opinion mining dependency parsing
在线阅读 下载PDF
A Knowledge-Enriched and Span-Based Network for Joint Entity and Relation Extraction 被引量:5
5
作者 Kun Ding Shanshan Liu +4 位作者 Yuhao Zhang Hui Zhang Xiaoxiong Zhang Tongtong Wu Xiaolei Zhou 《Computers, Materials & Continua》 SCIE EI 2021年第7期377-389,共13页
The joint extraction of entities and their relations from certain texts plays a significant role in most natural language processes.For entity and relation extraction in a specific domain,we propose a hybrid neural fr... The joint extraction of entities and their relations from certain texts plays a significant role in most natural language processes.For entity and relation extraction in a specific domain,we propose a hybrid neural framework consisting of two parts:a span-based model and a graph-based model.The span-based model can tackle overlapping problems compared with BILOU methods,whereas the graph-based model treats relation prediction as graph classification.Our main contribution is to incorporate external lexical and syntactic knowledge of a specific domain,such as domain dictionaries and dependency structures from texts,into end-to-end neural models.We conducted extensive experiments on a Chinese military entity and relation extraction corpus.The results show that the proposed framework outperforms the baselines with better performance in terms of entity and relation prediction.The proposed method provides insight into problems with the joint extraction of entities and their relations. 展开更多
关键词 Entity recognition relation extraction dependency parsing 1 Introduction
在线阅读 下载PDF
Semantic Entity Recognition and Relation Construction Method for Assembly Process Document
6
作者 顾星海 花豹 +2 位作者 刘亚辉 孙学民 鲍劲松 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期537-556,共20页
Assembly process documents record the designers'intention or knowledge.However,common knowl-edge extraction methods are not well suitable for assembly process documents,because of its tabular form and unstructured... Assembly process documents record the designers'intention or knowledge.However,common knowl-edge extraction methods are not well suitable for assembly process documents,because of its tabular form and unstructured natural language texts.In this paper,an assembly semantic entity recognition and relation con-struction method oriented to assembly process documents is proposed.First,the assembly process sentences are extracted from the table through concerned region recognition and cell division,and they will be stored as a key-value object file.Then,the semantic entities in the sentence are identified through the sequence tagging model based on the specific attention mechanism for assembly operation type.The syntactic rules are designed for realizing automatic construction of relation between entities.Finally,by using the self-constructed corpus,it is proved that the sequence tagging model in the proposed method performs better than the mainstream named entity recognition model when handling assembly process design language.The effectiveness of the proposed method is also analyzed through the simulation experiment in the small-scale real scene,compared with manual method.The results show that the proposed method can help designers accumulate knowledge automatically and efficiently. 展开更多
关键词 assembly process design knowledge extraction named entity recognition text extraction in table dependency syntactic parsing attention mechanism
原文传递
A survey of syntactic-semantic parsing based on constituent and dependency structures 被引量:3
7
作者 ZHANG MeiShan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期1898-1920,共23页
Syntactic and semantic parsing has been investigated for decades,which is one primary topic in the natural language processing community.This article aims for a brief survey on this topic.The parsing community include... Syntactic and semantic parsing has been investigated for decades,which is one primary topic in the natural language processing community.This article aims for a brief survey on this topic.The parsing community includes many tasks,which are difficult to be covered fully.Here we focus on two of the most popular formalizations of parsing:constituent parsing and dependency parsing.Constituent parsing is majorly targeted to syntactic analysis,and dependency parsing can handle both syntactic and semantic analysis.This article briefly reviews the representative models of constituent parsing and dependency parsing,and also dependency graph parsing with rich semantics.Besides,we also review the closely-related topics such as cross-domain,cross-lingual and joint parsing models,parser application as well as corpus development of parsing in the article. 展开更多
关键词 syntax parsing semantic parsing constituent parsing dependency parsing semantic graph parsing
原文传递
Robust Unsupervised Discriminative Dependency Parsing 被引量:1
8
作者 Yong Jiang Jiong Cai Kewei Tu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第2期192-202,共11页
Discriminative approaches have shown their effectiveness in unsupervised dependency parsing.However,due to their strong representational power,discriminative approaches tend to quickly converge to poor local optima du... Discriminative approaches have shown their effectiveness in unsupervised dependency parsing.However,due to their strong representational power,discriminative approaches tend to quickly converge to poor local optima during unsupervised training.In this paper,we tackle this problem by drawing inspiration from robust deep learning techniques.Specifically,we propose robust unsupervised discriminative dependency parsing,a framework that integrates the concepts of denoising autoencoders and conditional random field autoencoders.Within this framework,we propose two types of sentence corruption mechanisms as well as a posterior regularization method for robust training.We tested our methods on eight languages and the results show that our methods lead to significant improvements over previous work. 展开更多
关键词 unsupervised learning dependency parsing autoencoders
原文传递
Improving Syntactic Parsing of Chinese with Empty Element Recovery 被引量:1
9
作者 周国栋 李培峰 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第6期1106-1116,共11页
This paper puts forward and explores the problem of empty element (EE) recovery in Chinese from the syntactic parsing perspective, which has been largely ignored in the literature. First, we demonstrate why EEs play... This paper puts forward and explores the problem of empty element (EE) recovery in Chinese from the syntactic parsing perspective, which has been largely ignored in the literature. First, we demonstrate why EEs play a critical role in syntactic parsing of Chinese and how EEs can better benefit syntactic parsing of Chinese via re-categorization from the syntactic perspective. Then, we propose two ways to automatically recover EEs: a joint constituent parsing approach and a chunk-based dependency parsing approach. Evaluation on the Chinese TreeBank (CTB) 5.1 corpus shows that integrating EE recovery into the Charniak parser achieves a significant performance improvement of 1.29 in Fl-measure. To the best of our knowledge, this is the first close examination of EEs in syntactic parsing of Chinese, which deserves more attention in the future with regard to its specific importance. 展开更多
关键词 Chinese syntactic parsing empty element recovery joint constituent parsing chunk-based dependency parsing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部