To handle the effects of single event upsets(SEU),which are common to computers in space radiation environment,a new fault-tolerant system with dual-module redundancy is proposed using dynamic reconfigurable techniq...To handle the effects of single event upsets(SEU),which are common to computers in space radiation environment,a new fault-tolerant system with dual-module redundancy is proposed using dynamic reconfigurable technique of field programmable gate array(FPGA). This system contains detection and backup alternative functions,that is,the self-detection and self-healing functions can be completed,and consequently a system design with low hardware redundancy and high resource utilization can be achieved successfully. So it can not only detect fault but also repair the fault effectively after failure. Hence,this method is especially practical to the dynamically reconfigurable computers based on FPGAs. Design methodology has been verified by Virtex-4 FPGA on Xilinx Ml403 development platform.展开更多
With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependenc...With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 60971036the National High Technology Research and Development Program of China under Grant No. 2008AA01Z104+1 种基金the Fundamental Research Funds for the Central Universities under Grant No. ZYGX2009Z004the New Century Excellent Talents in University under Grant No. NCET-08-0087
文摘To handle the effects of single event upsets(SEU),which are common to computers in space radiation environment,a new fault-tolerant system with dual-module redundancy is proposed using dynamic reconfigurable technique of field programmable gate array(FPGA). This system contains detection and backup alternative functions,that is,the self-detection and self-healing functions can be completed,and consequently a system design with low hardware redundancy and high resource utilization can be achieved successfully. So it can not only detect fault but also repair the fault effectively after failure. Hence,this method is especially practical to the dynamically reconfigurable computers based on FPGAs. Design methodology has been verified by Virtex-4 FPGA on Xilinx Ml403 development platform.
基金supported by the National Natural Science Foundation of China (No. 61502043, No. 61132001)Beijing Natural Science Foundation (No. 4162042)BeiJing Talents Fund (No. 2015000020124G082)
文摘With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.