期刊文献+
共找到1,434篇文章
< 1 2 72 >
每页显示 20 50 100
Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode
1
作者 Qian Wang Dong Yang +8 位作者 Wenxing Xin Yongqi Wang Wenchang Han Wengxiang Yan Chunman Yang Fei Wang Yiyong Zhang Ziyi Zhu Xue Li 《Chinese Chemical Letters》 2025年第6期641-647,共7页
Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,saf... Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C. 展开更多
关键词 Lithium metal anode Electrolyte additives Lithophilic metal layer Lithium ion desolvation Lithium dendrites
原文传递
Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides(Co-Mo-C)heterostructure for robust Li-S batteries
2
作者 Xuanyang Jin Xincheng Guo +6 位作者 Siyang Dong Shilan Li Shengdong Jin Peng Xia Shengjun Lu Yufei Zhang Haosen Fan 《Chinese Chemical Letters》 2025年第7期552-559,共8页
Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effe... Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application.In this paper,cobalt-molybdenum bimetallic carbides heterostructure(Co_(6)Mo_(6)C_(2)@Co@NC)was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process.The obtained dodecahedral Co_(6)Mo_(6)C_(2)@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites,which speeds up the chemisorption and catalytic conversion of polysulfides,thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites.When applied as the LSBs separator modifier layer,the cell with modified separator present excellent rate capability and durable cycling stability.In particular,the cell with Co_(6)Mo_(6)C_(2)@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C,with the coulombic efficiency(CE)near to 100%.Moreover,the Co_(6)Mo_(6)C_(2)@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading(4.096 mg/cm^(2))at 0.5 C after 200 cycles.This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition. 展开更多
关键词 Synergistic regulation Co_(6)Mo_(6)C_(2)@Co@NC Polysulfide catalytic conversion Shuttle effect Lithium dendrites inhibition
原文传递
Influence of heavy reduction during solidification process of billets based on 3D reconstruction of dendrites 被引量:1
3
作者 Yi Nian You-cheng Zong +3 位作者 Chao-jie Zhang Xin-yu Tang Jia-le Li Li-qiang Zhang 《Journal of Iron and Steel Research International》 2025年第6期1596-1611,共16页
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den... The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation. 展开更多
关键词 SOLIDIFICATION Dendritic growth 3D reconstruction Heavy reduction Central segregation
原文传递
Restraining growth of Zn dendrites by poly dimethyl diallyl ammonium cations in aqueous electrolytes
4
作者 Xiang-Xin Zhang Yuan-Qiang Chen +8 位作者 Chang-Xin Lin Yuan-Sheng Lin Guo-Lin Hu Yong-Chuan Liu Xi-Lai Xue Su-Jing Chen Zhan-Lin Yang Bai-Sheng Sa Yi-Ning Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第8期3735-3747,共13页
Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl amm... Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl ammonium(PDDA) was reported,used in aqueous Zn-ion batteries electrolyte for stabilizing Zn anode.The growth of zinc dendrites can be significantly restrained by benefiting from the pronounced electrostatic shielding effect from PDDA on the Zn metal surface.Moreover,the PDDA is preferentially absorbed on Zn(002) plane,thus preventing unwanted side reactions on Zn anode.Owing to the introduction of a certain amount of PDDA additive into the common ZnSO_(4)-based electrolyte,the cycle life of assembled Zn‖Zn cells(1 mA·cm^(-2) and 1 mAh·cm^(-2)) is prolonged to more than 1100 h.In response to the perforation issue of Zn electrodes caused by PDDA additives,the problem can be solved by combining foamy copper with zinc foil.For real application,Zn-ion hybrid supercapacitors and MnO_(2)‖Zn cells were assembled,which exhibited excellent cycling stability with PDDA additives.This work provides a new solution and perspective to cope with the dendrite growth problem of Zn anode. 展开更多
关键词 PDDA Electrostatic shielding effect Zn anode Zn dendrites
原文传递
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
5
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery Zinc anode Zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
在线阅读 下载PDF
Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer 被引量:11
6
作者 黄华良 潘志权 +1 位作者 郭兴蓬 邱于兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期285-291,共7页
Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using pote... Effect of direct current electric field (DCEF) on corrosion behaviour of copper printed circuit board (PCB-Cu), Cl-ion migration behaviour, dendrites growth under thin electrolyte layer was investigated using potentiodynamic polarization and scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS). Results indicate that DCEF decreases the corrosion of PCB-Cu;Cl-ions directionally migrate from the negative pole to the positive pole, and enrich on the surface of the positive pole, which causes serious localized corrosion; dendrites grow on the surface of the negative pole, and the rate and scale of dendrite growth become faster and greater with the increase of external voltage and exposure time, respectively. 展开更多
关键词 COPPER dendrites MIGRATION direct current electric field thin electrolyte layer copper printed circuit board
在线阅读 下载PDF
Kinetic nucleation of primary α(Al) dendrites in Al-7%Si-Mg cast alloys with Ce and Sr additions 被引量:4
7
作者 陈忠伟 郝小雷 +1 位作者 赵静 马翠英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3561-3567,共7页
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco... Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy. 展开更多
关键词 aluminium alloy primaryαdendrite NUCLEATION grain refinement activation energy nucleation work CE SR
在线阅读 下载PDF
Directional growth behavior of a(Al) dendrites during concentration-gradientcontrolled solidification process in static magnetic field 被引量:2
8
作者 李磊 徐博 +6 位作者 佟伟平 何立子 班春燕 张辉 左玉波 朱庆丰 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2438-2445,共8页
The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under ... The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under various static magnetic fields(SMFs).The results show that in the large couples,the α(Al) dendrites reveal a directional growth character whether without or with the SMF.However,the 12 T magnetic field induces regular growth,consistent deflection and the decrease of secondary arm spacing of the dendrites.In the small couples,the α(Al) dendrites still reveal a directional growth character to some extent with a SMF of ≤5 T.However,an 8.8 T SMF destroys the directional growth and induces severe random deflections of the dendrites.When the SMF increases to 12 T,the a(Al) dendrites become quite regular despite of the consistent deflection.The directional growth arises from the continuous long-range concentration gradient field built in the melt.The morphological modification is mainly related to the suppression of natural convections and the induction of thermoelectric magnetic convection by the SMF. 展开更多
关键词 α(Al) dendrite diffusion couple concentration gradient field static magnetic field directional growth thermoelectric magnetic convection
在线阅读 下载PDF
The dynamic evolution of aggregated lithium dendrites in lithium metal batteries 被引量:8
9
作者 Xin Shen Rui Zhang +6 位作者 Shuhao Wang Xiang Chen Chuan Zhao Elena Kuzmina Elena Karaseva Vladimir Kolosnitsyn Qiang Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期137-143,共7页
Lithium(Li)metal anodes promise an ultrahigh theoretical energy density and low redox potential,thus being the critical energy material for next-generation batteries.Unfortunately,the formation of Li dendrites in Li m... Lithium(Li)metal anodes promise an ultrahigh theoretical energy density and low redox potential,thus being the critical energy material for next-generation batteries.Unfortunately,the formation of Li dendrites in Li metal anodes remarkably hinders the practical applications of Li metal anodes.Herein,the dynamic evolution of discrete Li dendrites and aggregated Li dendrites with increasing current densities is visualized by in-situ optical microscopy in conjunction with ex-situ scanning electron microscopy.As revealed by the phase field simulations,the formation of aggregated Li dendrites under high current density is attributed to the locally concentrated electric field rather than the depletion of Li ions.More specifically,the locally concentrated electric field stems from the spatial inhomogeneity on the Li metal surface and will be further enhanced with increasing current densities.Adjusting the above two factors with the help of the constructed phase field model is able to regulate the electrodeposited morphology from aggregated Li dendrites to discrete Li dendrites,and ultimately columnar Li morphology.The methodology and mechanistic understanding established herein give a significant step toward the practical applications of Li metal anodes. 展开更多
关键词 ELECTROCHEMISTRY Li dendrites Rechargeable Li batteries In-situ optical microscopy Phase field model Electrochemical engineering
在线阅读 下载PDF
Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries 被引量:6
10
作者 Zixin Guo Siguo Yang +5 位作者 Wenyang Zhao Shenghui Wang Jiong Liu Zhichao Ma Hongwei Zhao Luquan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期497-506,I0014,共11页
The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between d... The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode. 展开更多
关键词 Overdischarge Cu dendrites Mechanical properties NANOINDENTATION Micron scratch
在线阅读 下载PDF
Suppressing Li Dendrites via Electrolyte Engineering by Crown Ethers for Lithium Metal Batteries 被引量:4
11
作者 Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期226-228,共3页
Electrolyte engineering is considered as an effective strategy to establish stable solid electrolyte interface(SEI),and thus to suppress the growth of lithium dendrites.In a recent study reported in Advanced Functiona... Electrolyte engineering is considered as an effective strategy to establish stable solid electrolyte interface(SEI),and thus to suppress the growth of lithium dendrites.In a recent study reported in Advanced Functional Materials by Ma group,discovered that strong coordination force could be founded between 15-Crown-5 ether(15-C-5) and Li+,which facilitates the crown ether(15-C-1) to participate in the solvation structure of Li+ in the electrolyte for the same purpose.Such a novel strategy might impact the design of highperformance and safe lithium metal batteries(LMB s). 展开更多
关键词 Li dendrites Crown ethers Lithium metal batteries ELECTROLYTE
在线阅读 下载PDF
Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury 被引量:3
12
作者 Mi Li Jiawei Xu +10 位作者 Ying Zou Jialing Lu Aiyue Ou Xinrui Ma Jiaqi Zhang Yizhou Xu Lanya Fu Jingmin Liu Xianghai Wang Libing Zhou Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2757-2761,共5页
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be... Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury. 展开更多
关键词 brachial plexus conditional knockout DEGENERATION dendrites motor neuron peripheral nerve injury REGENERATION RHOA spinal cord ventral horn
暂未订购
Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct 被引量:2
13
作者 Chuanyu Liu Surong Zhou +3 位作者 Xuwen Sun Zhuli Liu Hongliang Wu Yuanwu Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第9期676-680,共5页
Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of f... Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex. These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction. 展开更多
关键词 cerebral infarction transcranial magnetic stimulation rehabilitation training sensorimotor cortex pyramidal cell dendrites SYNAPSE neural regeneration
在线阅读 下载PDF
Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes 被引量:2
14
作者 Shengjie Zhang Bin Cheng +6 位作者 Yanxiong Fang Dai Dang Xin Shen Zhiqiang Li Ming Wu Yun Hong Quanbing Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3951-3954,共4页
The uncontrolled growth of lithium dendrites and accumulation of"dead lithium"upon cycling are among the main obstacles that hinder the widespread application of lithium metal anodes.Herein,an ionic liquid(I... The uncontrolled growth of lithium dendrites and accumulation of"dead lithium"upon cycling are among the main obstacles that hinder the widespread application of lithium metal anodes.Herein,an ionic liquid(IL)consisting of 1-methyl-1-propylpiperidinium cation(Pp_(13)^+) and bis(fluorosulfonyl)imide anion(FSI^(-)),was chosen as the additive in propylene carbonate(PC)-based liquid electrolytes to circumvent the shortcoming of lithium metal anodes.The optimal 1%Pp_(13) FSI acts as the role of electrostatic shielding,lithiophobic effect and participating in the formation of solid electrolyte interface(SEI)layer with enhanced properties.The in-situ optical microscopy records that the addition of IL can effectively inhibit the growth of lithium dendrites and the corrosion of lithium anode.This study delivers an effective modification to optimize electrolytes for stable lithium metal batteries. 展开更多
关键词 Ionic liquid Piperidinium Lithium metal anode Solid electrolyte interface Lithium dendrites Dead lithium
原文传递
Simulation of inclined dendrites under natural convection by KKS phase field model based on CUDA 被引量:1
15
作者 Chang-sheng Zhu Tian-yu Li +2 位作者 Bo-rui Zhao Cang-long Wang Zi-hao Gao 《China Foundry》 SCIE CAS CSCD 2023年第5期432-442,共11页
In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low seria... In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low serial computing efficiency of a traditional CPU and achieve significant acceleration.This model was used to explore the evolution of dendrite growth under natural convection.Through the study of the tip velocities,it is found that the growth of the dendrite arms at the bottom is inhibited while the growth of the dendrite arms at the top is promoted by natural convection.In addition,research on the inclined dendrite under natural convection was conducted.It is observed that there is a deviation between the actual growth direction and the preferred angle of the inclined dendrite.With the increase of the preferred angle of the seed,the difference between the actual growth direction and the initial preferred angle of the inclined dendrite shows a trend of increasing at first and then decreasing.In the simulation area,the relative deflection directions of the primary dendrite arms in the top right corner and the bottom left corner of the same dendrite are almost counterclockwise,while the relative deflection directions of the other two primary dendrite arms are clockwise. 展开更多
关键词 PF-LBM natural convection inclined dendrites CUDA
在线阅读 下载PDF
Growth and microstructure of AlN whiskers and dendrites
16
作者 YingDai CewenNan 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期118-120,共3页
AlN whiskers or dendrites were synthesized with asublimation-recrystallization method by using Al, AlN powders and some additives as raw materials.Whiskers with different sizes that featured high purity and good cryst... AlN whiskers or dendrites were synthesized with asublimation-recrystallization method by using Al, AlN powders and some additives as raw materials.Whiskers with different sizes that featured high purity and good crystallinity were obtained bycontrolling temperature and gas supersaturation in the reaction container. The whiskers weredescribed as long and straight single crystals of approximately 1-30 mu m in diameter by thecentimeter range in length. However, AlN dendrites were about 1mm in diameter by 0.5cm in length,and showed an obviously preferential growth orientation, i.e., perpendicular to [21-bar1-bar1] and[101-bar1] planes. It is concluded that the whiskers or dendrites grow via the vapor-solidmechanism. 展开更多
关键词 aluminum nitride WHISKERS dendrites sublimation-recrystallizationmethod
在线阅读 下载PDF
Variation of crystal orientation during epitaxial growth of dendrites by laser deposition 被引量:5
17
作者 Guowei Wang Jingjing Liang +3 位作者 Yizhou Zhou Libin Zhao Tao Jin Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第4期732-735,共4页
A nickel-based superalloy was deposited onto a single crystal substrate based on epitaxial laser metal forming (E-LMF). The microstructure development in two depositions has been researched. For the first time, the ... A nickel-based superalloy was deposited onto a single crystal substrate based on epitaxial laser metal forming (E-LMF). The microstructure development in two depositions has been researched. For the first time, the crystal orientation of dendrites varying beyond 20° was found when the dendrites deflected in deposition. In addition, a new grain boundary was found between different orientation dendrites in a grain, and the detected grain boundary angle was 23°. The result shows that flowing field in laser pool is responsible for this phenomenon. 展开更多
关键词 Crystal orientation Epitaxial growth Laser deposition Single crystal Dendrite growth
原文传递
Formation of twinned dendrites during unidirectional solidification of Al-32%Zn alloy 被引量:3
18
作者 Zhong-wei CHEN Jian-ping GAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期802-811,共10页
The present study focused on the formation and crystallographic orientation of twinned dendrites coexisting with equiaxed grains in unidirectional solidification of Al-32%Zn(mass fraction)alloy.The morphology was inve... The present study focused on the formation and crystallographic orientation of twinned dendrites coexisting with equiaxed grains in unidirectional solidification of Al-32%Zn(mass fraction)alloy.The morphology was investigated by optical metallograph and electron back-scattered diffraction technique.Results showed that the macrostructure of the alloy exhibited a typical feathery and fan-like structure while the microstructures were elongated lamellas,which were separated by coherent and incoherent twin boundaries.Both the primary trunk and all lateral arms of twinned dendrites grew along〈110〉directions,unlike regular〈100〉α(Al)dendrites.The facet growth of crystals at solid/liquid interface was responsible for the origin of twinned dendrites during the weak local convection,and high thermal gradient and medium solidification velocity had significant contribution to the formation of twinned dendrites.The formation mechanism of twinned dendrites which consisted of three multiplication ways of new twin boundaries formation and one way of dendrite evolution in twin plane was shown schematically. 展开更多
关键词 unidirectional solidification twinned dendrite growth direction aluminum alloy
在线阅读 下载PDF
The mechanism of external pressure suppressing dendrites growth in Li metal batteries 被引量:2
19
作者 Genming Lai Yunxing Zuo +8 位作者 Junyu Jiao Chi Fang Qinghua Liu Fan Zhang Yao Jiang Liyuan Sheng Bo Xu Chuying Ouyang Jiaxin Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期489-494,共6页
Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern ca... Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern caused by Li dendrites growth.Despite the fact that many recent experimental studies found that external pressure suppresses the Li dendrites growth,the mechanism of the external pressure effect on Li dendrites remains poorly understood on the atomic scale.Herein,the large-scale molecular dynamics simulations of Li dendrites growth under different external pressure were performed with a machine learning potential,which has the quantum-mechanical accuracy.The simulation results reveal that the external pressure promotes the process of Li self-healing.With the increase of external pressure,the hole defects and Li dendrites would gradually fuse and disappear.This work provides a new perspective for understanding the mechanism for the impact of external pressure on Li dendrites. 展开更多
关键词 Li metal Machine learning potential Molecular dynamic simulation DENDRITE External pressure
在线阅读 下载PDF
In Vivo Two-photon Calcium Imaging in Dendrites of Rabies Virus-labeled V1 Corticothalamic Neurons 被引量:3
20
作者 Yajie Tang Liang Li +5 位作者 Leqiang Sun Jinsong Yu Zhe Hu Kaiqi Lian Gang Cao Jinxia Dai 《Neuroscience Bulletin》 SCIE CAS CSCD 2020年第5期545-553,共9页
Monitoring neuronal activity in vivo is critical to understanding the physiological or pathological functions of the brain.Two-photon Ca^(2+)imaging in vivo using a cranial window and specific neuronal labeling enable... Monitoring neuronal activity in vivo is critical to understanding the physiological or pathological functions of the brain.Two-photon Ca^(2+)imaging in vivo using a cranial window and specific neuronal labeling enables realtime,in situ,and long-term imaging of the living brain.Here,we constructed a recombinant rabies virus containing the Ca^(2+)indicator GCaMP6 s along with the fluorescent protein DsRed2 as a baseline reference to ensure GCaMP6 s signal reliability.This functional tracer was applied to retrogradely label specific V1-thalamus circuits and detect spontaneous Ca^(2+)activity in the dendrites of V1 corticothalamic neurons by in vivo two-photon Ca^(2+)imaging.Notably,we were able to record single-spine spontaneous Ca2+activity in specific circuits.Distinct spontaneous Ca^(2+)dynamics in dendrites of V1 corticothalamic neurons were found for different V1-thalamus circuits.Our method can be applied to monitor Ca^(2+)dynamics in specific input circuits in vivo,and contribute to functional studies of defined neural circuits and the dissection of functional circuit connections. 展开更多
关键词 In vivo Ca^(2+)imaging Cranial window Two-photon microscopy Rabies virus DENDRITE Primary visual cortex Corticothalamic projection Neural circuit tracing
原文传递
上一页 1 2 72 下一页 到第
使用帮助 返回顶部