By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
In this paper, the problem of stabilizing an unstable second order delay system using classical proportional-integralderivative(PID) controller is considered. An extension of the Hermite-Biehler theorem, which is appl...In this paper, the problem of stabilizing an unstable second order delay system using classical proportional-integralderivative(PID) controller is considered. An extension of the Hermite-Biehler theorem, which is applicable to quasi-polynomials, is used to seek the set of complete stabilizing proportional-integral/proportional-integral-derivative(PI/PID) parameters. The range of admissible proportional gains is determined in closed form. For each proportional gain, the stabilizing set in the space of the integral and derivative gains is shown to be a triangle.展开更多
The orderly delay control technique for a new type of arthropod robot is studied in this pa- per. The orderly delay controller is composed of three parts. The first part is a central pattern gener- ator (CPG) with p...The orderly delay control technique for a new type of arthropod robot is studied in this pa- per. The orderly delay controller is composed of three parts. The first part is a central pattern gener- ator (CPG) with periodical output. The second part is a neural pathway (NP) that generates the time delay characteristic of various gait patterns. The last part is a locomotion nerve center ( LNC ) that decides the frequency of the CPG output and generates orderly phase delay by changing the pa- rameters of NP. And then signals that fit for different gaits can be obtained through the regulation of LNC. Experiments are implemented with a robot following mathematical simulation of the controller. The experimental results show that various gait patterns can be realized successfully with the method proposed in this paper.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n&...In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>展开更多
By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to ...By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.展开更多
Some new oscillation criteria are established for a second order neutral delay differential equations. These results improve oscillation results of Y.V. Rogo-vchenko for the retarded delay differential equations. The ...Some new oscillation criteria are established for a second order neutral delay differential equations. These results improve oscillation results of Y.V. Rogo-vchenko for the retarded delay differential equations. The relevance of our theorems is illustrated with two carefully selected examples.展开更多
In this paper, we establish some new oscillation criteria for a non autonomous second order delay dynamic equation (r(t)g(x△(t)))△+p(t)f(x(τ(t)))=0 on a time scale T. Oscillation behavior of this e...In this paper, we establish some new oscillation criteria for a non autonomous second order delay dynamic equation (r(t)g(x△(t)))△+p(t)f(x(τ(t)))=0 on a time scale T. Oscillation behavior of this equation is not studied before. Our results not only apply on differential equations when T=R, difference equations when T=N but can be applied on different types of time scales such as when T=N for q〉1 and also improve most previous results. Finally, we give some examples to illustrate our main results.展开更多
By utilizing the first order behavior of the device,an equation for the frequency of operation of the submicron CMOS ring oscillator is presented.A 5-stage ring oscillator is utilized as the initial design,with differ...By utilizing the first order behavior of the device,an equation for the frequency of operation of the submicron CMOS ring oscillator is presented.A 5-stage ring oscillator is utilized as the initial design,with different Beta ratios,for the computation of the operating frequency.Later on,the circuit simulation is performed from 5-stage till 23-stage,with the range of oscillating frequency being 3.0817 and 0.6705 GHz respectively.It is noted that the output frequency is inversely proportional to the square of the device length,and when the value of Beta ratio is used as 2.3,a difference of 3.64%is observed on an average,in between the computed and the simulated values of frequency.As an outcome,the derived equation can be utilized,with the inclusion of an empirical constant in general,for arriving at the ring oscillator circuit’s output frequency.展开更多
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
文摘In this paper, the problem of stabilizing an unstable second order delay system using classical proportional-integralderivative(PID) controller is considered. An extension of the Hermite-Biehler theorem, which is applicable to quasi-polynomials, is used to seek the set of complete stabilizing proportional-integral/proportional-integral-derivative(PI/PID) parameters. The range of admissible proportional gains is determined in closed form. For each proportional gain, the stabilizing set in the space of the integral and derivative gains is shown to be a triangle.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘The orderly delay control technique for a new type of arthropod robot is studied in this pa- per. The orderly delay controller is composed of three parts. The first part is a central pattern gener- ator (CPG) with periodical output. The second part is a neural pathway (NP) that generates the time delay characteristic of various gait patterns. The last part is a locomotion nerve center ( LNC ) that decides the frequency of the CPG output and generates orderly phase delay by changing the pa- rameters of NP. And then signals that fit for different gaits can be obtained through the regulation of LNC. Experiments are implemented with a robot following mathematical simulation of the controller. The experimental results show that various gait patterns can be realized successfully with the method proposed in this paper.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>
基金supported by the National Natural Science Foundation of China(10461006)Basic Subject Foundation of Changzhou University(JS201004)
文摘By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.
文摘Some new oscillation criteria are established for a second order neutral delay differential equations. These results improve oscillation results of Y.V. Rogo-vchenko for the retarded delay differential equations. The relevance of our theorems is illustrated with two carefully selected examples.
文摘In this paper, we establish some new oscillation criteria for a non autonomous second order delay dynamic equation (r(t)g(x△(t)))△+p(t)f(x(τ(t)))=0 on a time scale T. Oscillation behavior of this equation is not studied before. Our results not only apply on differential equations when T=R, difference equations when T=N but can be applied on different types of time scales such as when T=N for q〉1 and also improve most previous results. Finally, we give some examples to illustrate our main results.
文摘By utilizing the first order behavior of the device,an equation for the frequency of operation of the submicron CMOS ring oscillator is presented.A 5-stage ring oscillator is utilized as the initial design,with different Beta ratios,for the computation of the operating frequency.Later on,the circuit simulation is performed from 5-stage till 23-stage,with the range of oscillating frequency being 3.0817 and 0.6705 GHz respectively.It is noted that the output frequency is inversely proportional to the square of the device length,and when the value of Beta ratio is used as 2.3,a difference of 3.64%is observed on an average,in between the computed and the simulated values of frequency.As an outcome,the derived equation can be utilized,with the inclusion of an empirical constant in general,for arriving at the ring oscillator circuit’s output frequency.