期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Meta-Path-Based Deep Representation Learning for Personalized Point of Interest Recommendation
1
作者 LI Zhong WU Meimei 《Journal of Donghua University(English Edition)》 CAS 2021年第4期310-322,共13页
With the wide application of location-based social networks(LBSNs),personalized point of interest(POI)recommendation becomes popular,especially in the commercial field.Unfortunately,it is challenging to accurately rec... With the wide application of location-based social networks(LBSNs),personalized point of interest(POI)recommendation becomes popular,especially in the commercial field.Unfortunately,it is challenging to accurately recommend POIs to users because the user-POI matrix is extremely sparse.In addition,a user's check-in activities are affected by many influential factors.However,most of existing studies capture only few influential factors.It is hard for them to be extended to incorporate other heterogeneous information in a unified way.To address these problems,we propose a meta-path-based deep representation learning(MPDRL)model for personalized POI recommendation.In this model,we design eight types of meta-paths to fully utilize the rich heterogeneous information in LBSNs for the representations of users and POIs,and deeply mine the correlations between users and POIs.To further improve the recommendation performance,we design an attention-based long short-term memory(LSTM)network to learn the importance of different influential factors on a user's specific check-in activity.To verify the effectiveness of our proposed method,we conduct extensive experiments on a real-world dataset,Foursquare.Experimental results show that the MPDRL model improves at least 16.97%and 23.55%over all comparison methods in terms of the metric Precision@N(Pre@N)and Recall@N(Rec@N)respectively. 展开更多
关键词 meta-path location-based recommendation heterogeneous information network(HIN) deep representation learning
在线阅读 下载PDF
Domain-Invariant Similarity Activation Map Contrastive Learning for Retrieval-Based Long-Term Visual Localization 被引量:2
2
作者 Hanjiang Hu Hesheng Wang +1 位作者 Zhe Liu Weidong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期313-328,共16页
Visual localization is a crucial component in the application of mobile robot and autonomous driving.Image retrieval is an efficient and effective technique in image-based localization methods.Due to the drastic varia... Visual localization is a crucial component in the application of mobile robot and autonomous driving.Image retrieval is an efficient and effective technique in image-based localization methods.Due to the drastic variability of environmental conditions,e.g.,illumination changes,retrievalbased visual localization is severely affected and becomes a challenging problem.In this work,a general architecture is first formulated probabilistically to extract domain-invariant features through multi-domain image translation.Then,a novel gradientweighted similarity activation mapping loss(Grad-SAM)is incorporated for finer localization with high accuracy.We also propose a new adaptive triplet loss to boost the contrastive learning of the embedding in a self-supervised manner.The final coarse-to-fine image retrieval pipeline is implemented as the sequential combination of models with and without Grad-SAM loss.Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMU-Seasons dataset.The strong generalization ability of our approach is verified with the RobotCar dataset using models pre-trained on urban parts of the CMU-Seasons dataset.Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision,especially under challenging environments with illumination variance,vegetation,and night-time images.Moreover,real-site experiments have been conducted to validate the efficiency and effectiveness of the coarse-to-fine strategy for localization. 展开更多
关键词 deep representation learning place recognition visual localization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部