An efficient algorithm for deciding whether a given integer vector is the spectrum of some Boolean function is presented. The algorithm performs a step-by-step spectral decomposition of the input vector and checks at ...An efficient algorithm for deciding whether a given integer vector is the spectrum of some Boolean function is presented. The algorithm performs a step-by-step spectral decomposition of the input vector and checks at each step a set of necessary conditions for spectrality for the resulting vectors. The algorithm concludes that the input vector cannot lead to a valid Boolean function as soon as a vector not satisfying the conditions is found, which, as proved in the paper, for almost all cases happens after the first step of the decomposition.展开更多
In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point res...In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.展开更多
Based on decisional Difiie-Hcllman problem, we propose a simpleproxy-protected signature scheme In the random oracle model, we also carry out the strict securityproof for the proposed scheme. The security of the propo...Based on decisional Difiie-Hcllman problem, we propose a simpleproxy-protected signature scheme In the random oracle model, we also carry out the strict securityproof for the proposed scheme. The security of the proposed scheme is not loosely related to thediscrete logarithm assumption hut tightly related to the decisional Diffie-Hellman assumption in therandom oracle model.展开更多
Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM te...Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.展开更多
Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to...Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated.展开更多
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
The optimization of condition-based maintenance (CBM) poses challenges due to the rapid advancement of monitoring technologies. Traditional CBM research has mainly relied on theory-driven approaches, which lead to the...The optimization of condition-based maintenance (CBM) poses challenges due to the rapid advancement of monitoring technologies. Traditional CBM research has mainly relied on theory-driven approaches, which lead to the development of several effective maintenance models characterized by their wide applicability and attractiveness. However, when the system reliability model becomes complex, such methods may run into intractable cost models. The Markov decision process (MDP), a classic framework for sequential decision making, has drawn increasing attention for optimization of CBM optimization due to its appealing tractability and pragmatic applicability across different problems. This paper presents a review of research that optimizes CBM policies using MDP, with a focus on mathematical modeling and optimization methods to enable action. We have organized the review around several key components that are subject to similar mathematical modeling constraints, including system complexity, the availability of system conditions, and diverse criteria of decision-makers. An increase in interest has led to the optimization of CBM for systems possessing increasing numbers of components and sensors. Then, the review focuses on joint optimization problems with CBM. Finally, as an important extension to traditional MDPs, reinforcement learning (RL) based methods are also reviewed as ways to optimize CBM policies. This paper provides significant background research for researchers and practitioners working in reliability and maintenance management, and gives discussions on possible future research directions.展开更多
In this paper we study the decision problem of the center or focus for a class of planar polynomial fields which can be changed into Abel equation. Taking a Poincaré return map h(x) , we can calculate any orde...In this paper we study the decision problem of the center or focus for a class of planar polynomial fields which can be changed into Abel equation. Taking a Poincaré return map h(x) , we can calculate any order derivative of h(x) at x=0 and obtain the focus value of each order. The new method in this paper avoids the recurence operation and reduces the work in calculating the focus value.展开更多
文摘An efficient algorithm for deciding whether a given integer vector is the spectrum of some Boolean function is presented. The algorithm performs a step-by-step spectral decomposition of the input vector and checks at each step a set of necessary conditions for spectrality for the resulting vectors. The algorithm concludes that the input vector cannot lead to a valid Boolean function as soon as a vector not satisfying the conditions is found, which, as proved in the paper, for almost all cases happens after the first step of the decomposition.
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut's University of Technology North Bangkok with Contract No.KMUTNB-FF-68-B-46.
文摘In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.
文摘Based on decisional Difiie-Hcllman problem, we propose a simpleproxy-protected signature scheme In the random oracle model, we also carry out the strict securityproof for the proposed scheme. The security of the proposed scheme is not loosely related to thediscrete logarithm assumption hut tightly related to the decisional Diffie-Hellman assumption in therandom oracle model.
基金supported by“1 Decembrie 1918”University of Alba Iulia,510009 Alba Iuliasupported in part by the HEC-NRPU project,under the grant No.14566.
文摘Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.
文摘Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated.
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
基金supported by the National Natural Science Foundation of China(Grant Nos.72401253,72371182,72002149,and 72271154)and the National Social Science Fund of China(23CGL018)+1 种基金the State Key Laboratory of Biobased Transportation Fuel Technology,China(Grant No.512302-X02301)a start-up grant from the ZJU-UIUC Institute at Zhejiang University(Grant No.130200-171207711).
文摘The optimization of condition-based maintenance (CBM) poses challenges due to the rapid advancement of monitoring technologies. Traditional CBM research has mainly relied on theory-driven approaches, which lead to the development of several effective maintenance models characterized by their wide applicability and attractiveness. However, when the system reliability model becomes complex, such methods may run into intractable cost models. The Markov decision process (MDP), a classic framework for sequential decision making, has drawn increasing attention for optimization of CBM optimization due to its appealing tractability and pragmatic applicability across different problems. This paper presents a review of research that optimizes CBM policies using MDP, with a focus on mathematical modeling and optimization methods to enable action. We have organized the review around several key components that are subject to similar mathematical modeling constraints, including system complexity, the availability of system conditions, and diverse criteria of decision-makers. An increase in interest has led to the optimization of CBM for systems possessing increasing numbers of components and sensors. Then, the review focuses on joint optimization problems with CBM. Finally, as an important extension to traditional MDPs, reinforcement learning (RL) based methods are also reviewed as ways to optimize CBM policies. This paper provides significant background research for researchers and practitioners working in reliability and maintenance management, and gives discussions on possible future research directions.
文摘In this paper we study the decision problem of the center or focus for a class of planar polynomial fields which can be changed into Abel equation. Taking a Poincaré return map h(x) , we can calculate any order derivative of h(x) at x=0 and obtain the focus value of each order. The new method in this paper avoids the recurence operation and reduces the work in calculating the focus value.