The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new...The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.展开更多
A mesh-free method is presented to investigate the static bending properties of functionally graded carbon nanotube-reinforced composite(FG-CNTRC)plates.The curvature of the plate is directly interpolated with the nod...A mesh-free method is presented to investigate the static bending properties of functionally graded carbon nanotube-reinforced composite(FG-CNTRC)plates.The curvature of the plate is directly interpolated with the nodal deflections due to the higher-order continuity property of the moving leastsquares approximation,establishing a mesh-free computational scheme where the nodal deflections are the only unknowns.The convergence and efficiency of the proposed method are studied based on a homogeneous square plate.The FG-CNTRC plates are modeled with continuously varying Young’s moduli along the thickness direction according to the volume fraction of the carbon nanotubes(CNTs).Detailed studies have been conducted on the effects of different boundary conditions,CNT volume fractions,geometric shapes,and width-to-thickness ratios on bending behavior.CNT efficiency parameters are introduced to account for load transfer between the nanotubes and the matrix,treating the nanocomposites as orthotropic materials.However,in the actual structure,arranging the CNTs in the desired direction is more difficult compared to other fibers.Therefore,in the present study,CNTs in the composites are considered to be arranged randomly,resulting in the composite properties being treated as isotropic.The study includes second-order derivatives of deflections,and the finite element method typically requires C1 continuity for interpolation,which introduces challenges in building elements and constructing interpolation functions.The distinct advantage of the mesh-free method is that it requires only C0 weight functions.A mesh-free computational scheme based on moving leastsquares approximations for composite plates using Kirchhoffplate theory is established.Bending analyses of homogeneous and FG-CNTRC plates are conducted using the proposed method.Aspects such as boundary conditions,CNT volume fractions,geometric shapes,and width-to-thickness ratios are also discussed.Regular node arrangements and background meshes are adopted in the present study.Results are computed using different scalar parameters and numbers of nodes.Convergence properties for the central deflection of isotropic plates are analyzed in terms of the number of nodes and different scalar parameters.The normalized central deflection is defined and examined under various boundary conditions.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
Although hazelnut oil is rich in nutrients,its quality is greatly affected by how it is processed.However,no studies to date have comprehensively analyzed the lipid composition of hazelnut oil using different processi...Although hazelnut oil is rich in nutrients,its quality is greatly affected by how it is processed.However,no studies to date have comprehensively analyzed the lipid composition of hazelnut oil using different processing methods.Here,we conducted a lipidomics analysis using UPLC-QTOF-MS to characterize the lipid composition of cold-pressed hazelnut oil(CPO),ultrasonic-assisted hexane hazelnut oil(UHO)and enzyme-assisted aqueous hazelnut oil(EAO).A total of 10 subclasses of 98 lipids were identified,including35 glycerolipids(GLs),56 glycerophospholipids(GPs)and 7 sphingolipids(SPs).The total lipid and GL content were the highest in CPO,GP content was the highest in UHO and the ceramide content in SPs was most abundant in EAO.Multivariate statistical analysis showed that the lipid profiles of hazelnut oil prepared with different processing methods varied.Twelve significantly different lipids(TAG 54:3,TAG 52:2,TAG54:4,TAG 54:2,TAG 52:3,TAG 54:5,DAG 36:2,DAG 36:4,DAG 36:3,PC 36:2,PA 36:2 and PE 36:3)were identified,and these lipids could potentially be used as biomarkers to distinguish between hazelnut oil subjected to different processing methods.Our results provide useful information for hazelnut oil applications and new insight into the effects of edible oil processing.展开更多
In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples ar...In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.展开更多
Atractylodis Rhizoma,a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases,undergoes various processing methods in China to enhance its therapeutic efficacy...Atractylodis Rhizoma,a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases,undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions.However,a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking.This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma,including raw Atractylodis Rhizoma(SCZ),bran-fried Atractylodis Rhizoma(FCZ),deep-fried Atractylodis Rhizoma(JCZ),and rice water-processed Atractylodis Rhizoma(MCZ).It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition a...Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.展开更多
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinfo...A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.展开更多
Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.I...Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.Impact damage distributions,compressive failure process after impact,quasi static indentation and compression of laminates with a hole were brought into comparison between these two test methods.The results showed that there is a great difference between these two test methods.Compressive behavior of laminates after impact varies with different test methods.Residual compressive strength of laminates after low velocity impact measured with SACMA Standard can reflect stiffness properties of composite resins more wholely than that measured with the other method can do.Small dimensional specimen test method should be improved on as an experimental standard of compressive strength after impact.展开更多
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso...Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure...Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.展开更多
Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation ...Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.展开更多
To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-...To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-particles.Neat PVDF membrane was prepared and its property was also compared with that of the modified membranes.Membrane permeation flux and anti-fouling performance were measured using a membrane cell.The contact angle between water and membrane surface was detected in order to denote the membrane hydrophilicity.Membrane morphology and surface structure were examined by atomic-force microscopy(AFM)and scanning electron microscopy(SEM).Experimental results showed that modified membranes had higher permeation fluxes than that of the neat PVDF membrane.The addition of nano-particles altered membrane surface morphology and increased surface roughness.Due to the hydrophilicity of nano-particles,however,the membrane anti-fouling performance was improved instead of worsened.The entrapped membrane exhibited better anti-fouling performance than the deposited membrane and the neat membrane.展开更多
A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. ...A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.展开更多
Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepar...Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepared using traditional casting method.The result shows that the nickel coating layer is continuous with uneven thickness.The interface between nickel and aluminum oxide exhibits a metallurgical bonding with coherent interface relationship.The strength,toughness and wettability of the SAC105 solder on the substrate are improved,while the conductivity is not decreased significantly.The fracture mode of composites transitions from a mixed toughness-brittleness mode to a purely toughness-dominated mode,characterized by many dimples.The prepared composite brazing material was made into solder paste for copper plate lap joint experiments.The maximum shear strength is achieved when the doping amount was 0.3wt%.The growth index of intermetallic compound at the brazing interface of Ni/Al_(2)O_(3)reinforced SAC105 composite solder is linearly fitted to n=0.39,demonstrating that the growth of intermetallic compound at the interface is a combined effect of grain boundary diffusion and bulk diffusion.展开更多
Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ ...Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.展开更多
文摘The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.
基金supported by the National Natural Science Foundation of China(No.52374110)Key scientific and technological projects of Henan province(No.242102320337)Basic Research Fund of Zhongyuan University of Technology(No.K2022QN008).
文摘A mesh-free method is presented to investigate the static bending properties of functionally graded carbon nanotube-reinforced composite(FG-CNTRC)plates.The curvature of the plate is directly interpolated with the nodal deflections due to the higher-order continuity property of the moving leastsquares approximation,establishing a mesh-free computational scheme where the nodal deflections are the only unknowns.The convergence and efficiency of the proposed method are studied based on a homogeneous square plate.The FG-CNTRC plates are modeled with continuously varying Young’s moduli along the thickness direction according to the volume fraction of the carbon nanotubes(CNTs).Detailed studies have been conducted on the effects of different boundary conditions,CNT volume fractions,geometric shapes,and width-to-thickness ratios on bending behavior.CNT efficiency parameters are introduced to account for load transfer between the nanotubes and the matrix,treating the nanocomposites as orthotropic materials.However,in the actual structure,arranging the CNTs in the desired direction is more difficult compared to other fibers.Therefore,in the present study,CNTs in the composites are considered to be arranged randomly,resulting in the composite properties being treated as isotropic.The study includes second-order derivatives of deflections,and the finite element method typically requires C1 continuity for interpolation,which introduces challenges in building elements and constructing interpolation functions.The distinct advantage of the mesh-free method is that it requires only C0 weight functions.A mesh-free computational scheme based on moving leastsquares approximations for composite plates using Kirchhoffplate theory is established.Bending analyses of homogeneous and FG-CNTRC plates are conducted using the proposed method.Aspects such as boundary conditions,CNT volume fractions,geometric shapes,and width-to-thickness ratios are also discussed.Regular node arrangements and background meshes are adopted in the present study.Results are computed using different scalar parameters and numbers of nodes.Convergence properties for the central deflection of isotropic plates are analyzed in terms of the number of nodes and different scalar parameters.The normalized central deflection is defined and examined under various boundary conditions.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
基金supported by Key R&D Project of Liaoning Province,under Grant Research and Demonstration of Key Technologies for Deep Processing and Comprehensive Utilization of Northeast Hazelnuts(2020JH2/10200037)Service Local Project of Liaoning Province,under Grant Demonstration and Promotion of new deep-processing technology for comprehensive utilization of Northeast Hazelnuts(LSNFW201903)horizontal subject,under Grant Demonstration and Promotion of key technologies for transformation and deep processing of wild hazelnut forest in northwestern Liaoning(H2019388)。
文摘Although hazelnut oil is rich in nutrients,its quality is greatly affected by how it is processed.However,no studies to date have comprehensively analyzed the lipid composition of hazelnut oil using different processing methods.Here,we conducted a lipidomics analysis using UPLC-QTOF-MS to characterize the lipid composition of cold-pressed hazelnut oil(CPO),ultrasonic-assisted hexane hazelnut oil(UHO)and enzyme-assisted aqueous hazelnut oil(EAO).A total of 10 subclasses of 98 lipids were identified,including35 glycerolipids(GLs),56 glycerophospholipids(GPs)and 7 sphingolipids(SPs).The total lipid and GL content were the highest in CPO,GP content was the highest in UHO and the ceramide content in SPs was most abundant in EAO.Multivariate statistical analysis showed that the lipid profiles of hazelnut oil prepared with different processing methods varied.Twelve significantly different lipids(TAG 54:3,TAG 52:2,TAG54:4,TAG 54:2,TAG 52:3,TAG 54:5,DAG 36:2,DAG 36:4,DAG 36:3,PC 36:2,PA 36:2 and PE 36:3)were identified,and these lipids could potentially be used as biomarkers to distinguish between hazelnut oil subjected to different processing methods.Our results provide useful information for hazelnut oil applications and new insight into the effects of edible oil processing.
文摘In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.
基金supported by the National Natural Science Foundation of China (No.82304722)Hubei Provincial Natural Science Foundation of China (No.2023AFD154).
文摘Atractylodis Rhizoma,a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases,undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions.However,a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking.This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma,including raw Atractylodis Rhizoma(SCZ),bran-fried Atractylodis Rhizoma(FCZ),deep-fried Atractylodis Rhizoma(JCZ),and rice water-processed Atractylodis Rhizoma(MCZ).It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
文摘Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.
基金Project supported by the National Council of Humanities,Sciences,and Technologies of Mexico(Nos.CF-2023-G-792 and CF-2023-G-1458)the National Council for Scientific and Technological Development of Brazil(No.09/2023)the Research on Productivity of Brazil(No.307188/2023-0)。
文摘A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.
文摘Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.Impact damage distributions,compressive failure process after impact,quasi static indentation and compression of laminates with a hole were brought into comparison between these two test methods.The results showed that there is a great difference between these two test methods.Compressive behavior of laminates after impact varies with different test methods.Residual compressive strength of laminates after low velocity impact measured with SACMA Standard can reflect stiffness properties of composite resins more wholely than that measured with the other method can do.Small dimensional specimen test method should be improved on as an experimental standard of compressive strength after impact.
基金Project(2005k002-c-2) supported by the Science and Technology Development Program of Railways Department, China
文摘Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金Project(2004G016-B) supported by the Science and Technology Development Program of Railways Department,China
文摘Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
基金The research was funded by VSB-Technical University of Ostrava,the SGS Projects SP2022/58,SP2023/008.Huanyu Li,Ing.,Economic Faculty,VSB-TUO,Ostrava,Czech Republic。
文摘Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA06Z303)the National Natural Science Foundation of China(Grant No.50778050)+2 种基金the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period(Grant No.2006BAJ08B09)the National Creative Research Groups(Grant No.50821002)the Key Scientific and Technological Project of Heilongjiang Province(Grant No.GB06C20403)
文摘To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-particles.Neat PVDF membrane was prepared and its property was also compared with that of the modified membranes.Membrane permeation flux and anti-fouling performance were measured using a membrane cell.The contact angle between water and membrane surface was detected in order to denote the membrane hydrophilicity.Membrane morphology and surface structure were examined by atomic-force microscopy(AFM)and scanning electron microscopy(SEM).Experimental results showed that modified membranes had higher permeation fluxes than that of the neat PVDF membrane.The addition of nano-particles altered membrane surface morphology and increased surface roughness.Due to the hydrophilicity of nano-particles,however,the membrane anti-fouling performance was improved instead of worsened.The entrapped membrane exhibited better anti-fouling performance than the deposited membrane and the neat membrane.
文摘A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.
基金ational Natural Science Foundation of China(U1604132)Central Plains Talents Program-Fund of Central Plains Leading Talents(ZYYCYU002130)+1 种基金Key Technology Research and Development Program of Henan Province(222102230114)Major Scientific Research Foundation of Higher Education of Henan Province(23B430003)。
文摘Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepared using traditional casting method.The result shows that the nickel coating layer is continuous with uneven thickness.The interface between nickel and aluminum oxide exhibits a metallurgical bonding with coherent interface relationship.The strength,toughness and wettability of the SAC105 solder on the substrate are improved,while the conductivity is not decreased significantly.The fracture mode of composites transitions from a mixed toughness-brittleness mode to a purely toughness-dominated mode,characterized by many dimples.The prepared composite brazing material was made into solder paste for copper plate lap joint experiments.The maximum shear strength is achieved when the doping amount was 0.3wt%.The growth index of intermetallic compound at the brazing interface of Ni/Al_(2)O_(3)reinforced SAC105 composite solder is linearly fitted to n=0.39,demonstrating that the growth of intermetallic compound at the interface is a combined effect of grain boundary diffusion and bulk diffusion.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)
文摘Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods.