期刊文献+
共找到12,315篇文章
< 1 2 250 >
每页显示 20 50 100
Selenide in 3D structure of polyhedra branching out nanotubes for collaborative facilitated conversion and capturing of polysulfide in Li-S batteries
1
作者 Yi-Yang Li Hui Liu +3 位作者 Bo Jin Nan Gao Xing-You Lang Qing Jiang 《Rare Metals》 2025年第1期169-184,共16页
Lithium-sulfur batteries(LSBs)are considered as the promising solution to replace conventional lithium-ion batteries due to satisfactory energy density.In recent times,the LSBs field has been found to face some diffic... Lithium-sulfur batteries(LSBs)are considered as the promising solution to replace conventional lithium-ion batteries due to satisfactory energy density.In recent times,the LSBs field has been found to face some difficulties in exploring practical applications in which cycling stability and cycle life are awful owing to the shuttling effect of lithium polysulfides(LiPSs)and low sulfur utilization.In this work,by synthesizing Co_(3)Se_(4) nanoparticles onto N-doped carbon(NC)polyhedra interconnected with carbon nanotubes(CNTs),NC@Co_(3)Se_(4)/CNTs is proposed as a multifunctional sulfur carrier.The Co_(3)Se_(4) nanoparticles fleetly catalyze the conversion of LiPSs and availably immobilize LiPSs.Meanwhile,the NC polyhedral skeleton enhances the electronic conductivity of active sulfur,while the CNTs facilitate Li+diffusion and supply a mass of conductive channels.Density-functional theory(DFT)calculations demonstrate the relevant mechanisms.That is to say,the NC@Co_(3)Se_(4)/CNTs benefit from the synergistic effect of Co_(3)Se_(4) nanoparticles(highly catalytic ability and strong adsorbability for LiPSs)and the special carbonaceous structure,rapidly converting LiPSs and inhibiting the shuttle of LiPSs.Therefore,lithium-sulfur battery assembled with S/NC@Co_(3)Se_(4)/CNTs cathode as well as nitrogen and sulfur co-doped carbon-coated polypropylene(N,S-C/PP)separator possesses a high initial discharge capacity of 1413 mAh·g-1 at 0.12C and persistently circulates for 1000 cycles at 1C with a capacity attenuation rate per cycle of 0.034%.This work provides a realistic idea for the use of transition metal selenide in the field of high-performance LSBs. 展开更多
关键词 SELENIDE Shutting effect Conversion and capturing Long-term cycling stability Density-functional theory calculation
原文传递
Dynamics and experiments of a tendon-actuated flexible robotic arm for capturing a floating target
2
作者 Xin Xia Yunpeng Sun Jialiang Sun 《Defence Technology(防务技术)》 2025年第5期216-241,共26页
Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an ... Reusable and flexible capturing of space debris is highly required in future aerospace technologies.A tendon-actuated flexible robotic arm is therefore proposed for capturing floating targets in this paper.Firstly,an accurate dynamic model of the flexible robotic arm is established by using the absolute nodal coordinate formulation(ANCF)in the framework of the arbitrary Lagrangian-Eulerian(ALE)description and the natural coordinate formulation(NCF).The contact and self-contact dynamics of the flexible robotic arm when bending and grasping an object are considered via a fast contact detection approach.Then,the dynamic simulations of the flexible robotic arm for capturing floating targets are carried out to study the influence of the position,size,and mass of the target object on the grasping performance.Finally,a principle prototype of the tendon-actuated flexible robotic arm is manufactured to validate the dynamic model.The corresponding grasping experiments for objects of various shapes are also conducted to illustrate the excellent performance of the flexible robotic arm. 展开更多
关键词 Tendon-actuated flexible robotic arm Dynamic modeling Contact dynamics ALE-ANCF variable-length cable element capturing experiments
在线阅读 下载PDF
A review of microplastic surface interactions in water and potential capturing methods
3
作者 Amir Muhammad Noh Amin Abdul Rahman Arjulizan Rusli +6 位作者 Muhammad Khalil Abdullah Raa Khimi Shuib Zuratul Ain Abdul Hamid Ku Marsilla Ku Ishak Muaz Mohd Zaini Makhtar Mariatti Jaafar Mohamad Danial Shafiq 《Water Science and Engineering》 CSCD 2024年第4期361-370,共10页
Microplastics are emerging micropollutants in water threatening aquatic and land organisms.The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of t... Microplastics are emerging micropollutants in water threatening aquatic and land organisms.The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of the plastic waste.Although typical plastic-based materials are inert,the behavior of fragmented plastics is arbitrary and indefinite.When exposed to erratic water environments with the presence of organic and synthetic impurities,pH,temperature,and salt,microplastic surfaces may be potentially active and generate charges in water.These phenomena determine microplastics in water as a colloidal system.The classical Derjaguin Landau Verwey and Overbeek(DLVO)theory can be used to identify the microplastic surface behavior in water.The modification of microplastic surfaces eventually determines the overall interactions between microplastics and other constituents in water.Moreover,the geometry of microplastics and additives present in microcontaminants play a crucial role in their net interactions.Hence,multiple microplastic removal techniques,such as coagulation,filtration,and air flotation,can be developed to address the issue.In many cases,a combination of these methods may be needed to achieve the overall procedure in water treatment plants or generic water systems.Selection of an appropriate microplastic removal technique is crucial and should be based on the water environment and intended water use to ensure its safety. 展开更多
关键词 Microplastics INTERACTIONS SURFACES COLLOIDAL capturing
在线阅读 下载PDF
Force-position collaborative optimization of rope-driven snake manipulator for capturing non-cooperative space targets
4
作者 Xiaofeng LI Jian TIAN +1 位作者 Cheng WEI Xibin CAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期369-384,共16页
With the rapid development of space activities,non-cooperative space targets increase swiftly,such as failed satellites and upper stages,threating normal spacecrafts seriously.As there are some problems in the capture... With the rapid development of space activities,non-cooperative space targets increase swiftly,such as failed satellites and upper stages,threating normal spacecrafts seriously.As there are some problems in the capture process,such as excessive collision and fast tumbling of targets,manipulator with redundant Degrees of Freedom(DOFs)can be used to improve the compliance and therefore solve these problems.The Rope-Driven Snake Manipulator(RDSM)is a combina-tion of hyper-redundant DOFs and better compliance,and therefore it is suitable for capturing mis-sion.In this paper,a snake manipulator mechanism is designed,and the complete kinematic model and system dynamic model considering RDSM,target and contact is established.Then,to obtain the configuration of joint with hyper-redundant DOFs,an improved motion dexterity index is pro-posed as the joint motion optimization target.Besides,the force-position collaborative optimization index is designed to adjust active stiffness,and the impedance control method based on the modified index is used to capture the space target.Finally,the proposed force-position collaborative opti-mization method is verified by virtual prototype co-simulation.The results demonstrate that based on the proposed method,the collision force is reduced by about 25%compared to normal impe-dance control,showing higher safety. 展开更多
关键词 capturing non-cooperative spacetargets Rope-driven snakemanipu-lator Force-position collaborative optimization Redundant degrees of free-dom Active stiffness adjustment
原文传递
Capturing CO2 Emissions in the George C. Wallace Tunnel: A Case Study
5
作者 Gabe Canitz Cole Ciesta +4 位作者 Klint Green Justin Sanders Jason Valencia Jeremy Willingham Daniel Fonseca 《Intelligent Control and Automation》 2024年第3期83-94,共12页
This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, ... This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, USA to capture and redirect emissions to a direct air capture (DAC) device to sequester 25% of the total CO2 mass generated from inside the tunnel. The total CO2 mass rate for the westbound traffic between the week-day hours of 7 a.m. and 6 p.m. has been estimated between 2,300 to 3,000 lbs./hr. By sequestering these emissions, the overall surrounding air quality was shown to be improved to a level that mirrors that from the pre-US industrial era of 270 ppm. 展开更多
关键词 CO2 capture Tunnel Ventilation Air Flow Analysis Jet Fan Sizing
在线阅读 下载PDF
Porous sorbents for direct capture of carbon dioxide from ambient air 被引量:1
6
作者 Yuchen Zhang Lifeng Ding +3 位作者 Zhenghe Xie Xin Zhang Xiaofeng Sui Jian-Rong Li 《Chinese Chemical Letters》 2025年第3期125-133,共9页
Large-scale deployment of carbon dioxide(CO_(2))removal technology is an essential step to cope with global warming and achieve carbon neutrality.Direct air capture(DAC)has recently received increasing attention given... Large-scale deployment of carbon dioxide(CO_(2))removal technology is an essential step to cope with global warming and achieve carbon neutrality.Direct air capture(DAC)has recently received increasing attention given the high flexibility to remove CO_(2)from discrete sources.Porous materials with adjustable pore characteristics are promising sorbents with low or no latent heat of vaporization.This review article has summarized the recent development of porous sorbents for DAC,with a focus of pore engineering strategy and adsorption mechanism.Physisorbents such as zeolites,porous carbons,metal-organic frameworks(MOFs),and amine-modified chemisorbents have been discussed and their challenges in practical application have been analyzed.At last,future directions have been proposed,and it is expected to inspire collaborations from chemistry,environment,material science and engineering communities. 展开更多
关键词 Direct air capture Carbon neutrality Porous materials PHYSISORPTION CHEMISORPTION
原文传递
Precursor-chemistry engineering toward ultrapermeable carbon molecular sieve membrane for CO_(2)capture 被引量:1
7
作者 Mengjie Hou Lin Li +5 位作者 Ruisong Xu Yunhua Lu Jing Song Zhongyi Jiang Tonghua Wang Xigao Jian 《Journal of Energy Chemistry》 2025年第3期421-430,共10页
Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)ca... Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)capture.It is urgently needed for membrane-based CO_(2)capture to develop the high-performance membrane materials with high permeability,selectivity,and stability.Herein,ultrapermeable carbon molecular sieve(CMS)membranes are fabricated by py roly zing a finely-engineered benzoxazole-containing copolyimide precursor for efficient CO_(2)capture.The microstructure of CMS membrane has been optimized by initially engineering the precursor-chemistry and subsequently tuning the pyrolysis process.Deep insights into the structure-property relationship of CMSs are provided in detail by a combination of experimental characterization and molecular simulations.We demonstrate that the intrinsically high free volume environment of the precursor,coupled with the steric hindrance of thermostable contorted fragments,promotes the formation of loosely packed and ultramicroporous carbon structures within the resultant CMS membrane,thereby enabling efficient CO_(2)discrimination via size sieving and affinity.The membrane achieves an ultrahigh CO_(2)permeability,good selectivity,and excellent stability.After one month of long-term operation,the CO_(2)permeability in the mixed gas is maintained at 11,800 Barrer,with a CO_(2)/N_(2)selectivity exceeding 60.This study provides insights into the relationship between precursor-chemistry and CMS performance,and our ultrapermeable CMS membrane,which is scalable using thin film manufacturing,holds great potential for industrial CO_(2)capture. 展开更多
关键词 CO_(2)capture Gas separation Carbon molecular sieve membrane precursor-chemistry
在线阅读 下载PDF
High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture,Utilization,and Storage(CCUS)Applications 被引量:1
8
作者 Lin Du Yao-Yu Xiao +2 位作者 Zhi-Chao Jiang Hongbo Zeng Huazhou Li 《Engineering》 2025年第5期128-140,共13页
CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voir... CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications. 展开更多
关键词 Carbon capture utilization and storage Profile control Dispersed particle gel Double-network hydrogel Irreversible swelling
在线阅读 下载PDF
Eliminating active CO_(2) concentration in Carbon Capture and Storage(CCUS):Molten carbonate decarbonization through an insulation/diffusion membrane 被引量:1
9
作者 Gad Licht Ethan Peltier +1 位作者 Simon Gee Stuart Licht 《DeCarbon》 2025年第1期71-79,共9页
Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here ... Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2). 展开更多
关键词 Carbon CCUS(Carbon capture Utilization Storage) Carbon nanomaterials Carbon dioxide electrolysis Molten carbonate Greenhouse gas mitigation
在线阅读 下载PDF
Preparation of porous MgO/ZrO_(2)-supported amine-based adsorbents and their application in CO_(2)capture
10
作者 SHI Guoliang ZHANG Xinying +1 位作者 LI Xiaolan HOU Chunyue 《燃料化学学报(中英文)》 北大核心 2025年第6期935-942,共8页
Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent material... Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability. 展开更多
关键词 CO_(2)capture amine-based adsorbent impregnation micro-mesopore adsorption
在线阅读 下载PDF
Research on biochar prepared by trace KOH catalyzed CO_(2) activation vs KOH activation as advanced candidate for carbon capture
11
作者 DENG Lihua XIA Wei +4 位作者 YANG Zhikun ZHANG Wenda FENG Dongdong SUN Shaozeng ZHAO Yijun 《燃料化学学报(中英文)》 北大核心 2025年第9期1330-1341,I0001-I0014,共26页
The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace K... The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials. 展开更多
关键词 BIOCHAR trace KOH catalyzed activation CO_(2)activation carbon capture
在线阅读 下载PDF
Ambient CO_(2) Capture and Valorization Enabled by Tandem Electrolysis Using Solid-State Electrolyte Reactor
12
作者 Yan-Bo Hua Bao-Xin Ni Kun Jiang 《电化学(中英文)》 北大核心 2025年第6期38-50,共13页
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten... Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community. 展开更多
关键词 ELECTROCATALYSIS ELECTROLYSIS CO_(2)capture CO_(2)reduction Solid-state electrolyte reactor
在线阅读 下载PDF
Steam Methane Reforming(SMR)Combined with Ship Based Carbon Capture(SBCC)for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas(LNG)Carriers 被引量:1
13
作者 Ikram Belmehdi Boumedienne Beladjine +2 位作者 Mohamed Djermouni Amina Sabeur Mohammed El Ganaoui 《Fluid Dynamics & Materials Processing》 2025年第1期71-85,共15页
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner... The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint. 展开更多
关键词 Carbon dioxide(CO_(2))emissions blue hydrogen boil-off gas(BOG) steam methane reforming(SMR) ship-based carbon capture(SBCC)
在线阅读 下载PDF
Silica Gel Supported Solid Amine Sorbents for CO_(2) Capture
14
作者 Baljeet Singh Zahra Eshaghi Gorji +2 位作者 Rustam Singh Vikas Sharma Timo Repo 《Energy & Environmental Materials》 2025年第1期273-291,共19页
Point source CO_(2) capture(PSCC)is crucial for decarbonizing various industrial sectors,while direct air capture(DAC)holds promise for removing CO_(2) directly from the air.Sorbents play a critical role in both techn... Point source CO_(2) capture(PSCC)is crucial for decarbonizing various industrial sectors,while direct air capture(DAC)holds promise for removing CO_(2) directly from the air.Sorbents play a critical role in both technologies,with their performances,efficiency,cost,etc.,largely depending on which type is used(physical or chemical).Solid amine sorbents(SAS)employed in the chemical adsorption of CO_(2) are suitable for both PSCC and DAC.SAS offer significant advantages over liquid amines such as monoethanolamine(MEA),due to their ability to perform cyclic adsorption–desorption with much lower energy requirement.The environmental concern associated with MEA can be mitigated by SAS.Support materials have a significantly important role in stabilizing amine and enhancing stability and kinetics;varieties of support materials have been screened at a laboratory scale.One promising support material is a silica gel(SG),which is commercially available and attractive for designing cost-effective sorbents for large-scale CO_(2) capture.Various impregnation methods such as physical adsorption and covalent functionalization have been employed to functionalize silica surfaces with amines.This review provided a comprehensive critical analysis of SG-based SAS for CO_(2) capture.We discussed and evaluated them in terms of their adsorption capacity,adsorption,and desorption conditions,and the kinetics involved in these processes.Finally,we proposed a few recommendations for further development of low-cost,lower carbon footprint SAS for large-scale deployment of CO_(2) capture technology. 展开更多
关键词 direct air capture point source CO_(2)capture silica gel solid amine sorbent
在线阅读 下载PDF
Research on Optimal Scheduling of Integrated Energy Systems with Wind-Photovoltaic-Biogas-Storage Considering Carbon Capture Systems and Power-to-Gas Coordination
15
作者 Yunfei Xu Jianfeng Liu +2 位作者 Tianxing Sun Heran Kang Xiaoqing Hao 《Energy Engineering》 2025年第8期3155-3176,共22页
In order to promote the utilization level of new energy resources for local and efficient consumption,this paper introduces the biogas(BG)fermentation technology into the integrated energy system(IES).This initiative ... In order to promote the utilization level of new energy resources for local and efficient consumption,this paper introduces the biogas(BG)fermentation technology into the integrated energy system(IES).This initiative is to study the collaborative and optimal scheduling of IES with wind power(WP),photovoltaic(PV),and BG,while integrating carbon capture system(CCS)and power-to-gas(P2G)system.Firstly,the framework of collaborative operation of IES for BG-CCS-P2G is constructed.Secondly,the flexible scheduling resources of the source and load sides are fully exploited,and the collaborative operation mode of CCS-P2G is proposed to establish a model of IES with WP,PV,and BG multi-energy flow coupling.Then,with the objective of minimizing the intra-day operating cost and the constraints of system energy balance and equipment operating limits,the IES withWP,PV,and BG collaborative optimal scheduling model is established.Finally,taking into account the uncertainty of the output of WP and PV generation,the proposed optimal scheduling model is solved by CPLEX,and its validity is verified by setting several scenarios.The results show that the proposed collaborative operation mode and optimal scheduling model can realize the efficient,low-carbon,and economic operation of the IES with WP,PV,and BG and significantly enhance the utilization of new energy for local consumption. 展开更多
关键词 Integrated energy system BIOGAS power-to-gas carbon capture system COLLABORATIVE
在线阅读 下载PDF
A moisture-driven direct air capture device for low-cost gas fertilizer
16
作者 Renyu XIE Sheng CHEN +1 位作者 Xuejun ZHANG Long JIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第4期389-392,共4页
Direct air capture(DAC)is a negative carbon emission technology that faces challenges in scalability and practical deployment due to its exorbitant costs.Hou et al.(2017)integrated DAC technology with fertilization.A ... Direct air capture(DAC)is a negative carbon emission technology that faces challenges in scalability and practical deployment due to its exorbitant costs.Hou et al.(2017)integrated DAC technology with fertilization.A multi-bed desorption system driven by water provides a competitive and sustainable carbon source for indoor agriculture. 展开更多
关键词 negative carbon emission direct air capture dac direct air capture gas fertilizer negative carbon emission technology moisture driven carbon source indoor agriculture
原文传递
A novel Oocystis algal strain enables highly efficient simultaneous biodegradation of bisphenol A and carbon capture in seawater
17
作者 Na Wang Jian Lu +4 位作者 Jun Wu Cui Zhang Jianhua Wang Spiros N.Agathos Yuexia Feng 《Frontiers of Environmental Science & Engineering》 2025年第10期27-40,共14页
The removal of bisphenol A (BPA) in seawater using microalgae is still a challenge due to the low removal efficiency and weak tolerance. A novel Oocystis algal strain was isolated for BPA removal with an efficiency (&... The removal of bisphenol A (BPA) in seawater using microalgae is still a challenge due to the low removal efficiency and weak tolerance. A novel Oocystis algal strain was isolated for BPA removal with an efficiency (> 98%) over two times higher than that of the common microalgae Chlorella (42.8%). The maximal carbon capture rate of Oocystis was 0.16 g/(L·d) which was much higher than that of Chlorella (0.06 g/(L·d)). The BPA removal fitted a first-order kinetic model and Oocystis showed a maximum removal rate of 29.80 µg/(L·d) at a BPA concentration of 2000 µg/L. The new Oocystis strain had a wide range of pH adaptability for BPA removal. The sharp increase in peroxidase (POD) activity indicated its involvement in BPA degradation. Transcriptome analysis showed that BPA mainly affected the photosynthesis-related genes while the engagement of glutathione POD in the BPA biodegradation was confirmed. BPA could also serve as growth promoter for Oocystis during the removal process, which subsequently enhanced the growth and carbon capture. BPA could be removed by the Oocystis strain through hydroxylation, demethylation, and conjugation. The Oocystis strain still maintained high BPA removal efficiency (100%) and carbon capture rate (0.2 g/(L·d)) in the pilot-scale tailwater treatment system, illustrating microalgal processes were efficient for marine pollution control. This study also provides new ideas for developing low-cost carbon capture technologies to achieve the goal of carbon neutrality. 展开更多
关键词 Oocystis MICROPOLLUTANT Stress response Degradation Transcriptome analysis Carbon capture
原文传递
Motion Characteristics Analysis of a Novel Autonomous Underwater Vehicle Deployable Capture Mechanism
18
作者 Guoxing Zhang Renjie Luo +2 位作者 Jinwei Guo Jie Wang Xinlu Xia 《Chinese Journal of Mechanical Engineering》 2025年第5期611-626,共16页
The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the l... The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the launch and recovery of AUV and elucidate its kinematic characteristics.Initially,based on the principles of deployment and retraction for AUV capture movements,a design scheme for a novel foldable and deployable capture mechanism is proposed.Subsequently,a detailed analysis of the Degrees of Freedom(DoFs)for enveloping and grasping movements is conducted according to screw theory.Additionally,the structural design of the actuation units for the capture mechanism is thoroughly discussed.Motion screw topology diagram is utilized to construct the kinematic model.On this basis,kinematic simulation verification of the capture mechanism is performed.The theoretical analysis revealed that the DoF for enveloping and grasping movements are 6 and 2,respectively.By appropriately configuring the actuation mechanism,enveloping and grasping movements can be achieved with a single actuation.The displacement and velocity curves of the capture mechanism were smooth,with no interference occurring.Vibration test results validate the reliability of the capture mechanism.The research work provides a valuable reference for the development of novel capture equipment for AUVs. 展开更多
关键词 capture mechanism AUV DoF analysis Motion characteristics
在线阅读 下载PDF
MOFs-based porous liquids for CO_(2) capture and utilization
19
作者 Xun Wang Yuxi Liu +3 位作者 Hongxing Dai Zhen Wei Shaohua Xie Jiguang Deng 《Green Energy & Environment》 2025年第8期1674-1691,共18页
Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat... Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat transfer,which are widely used in gas adsorption and sep-aration.Metal–organic frameworks(MOFs)with merits like large surface area,inherent porous structure and adjustable topology have been considered as one of the best candidates for PLs construction.This review presents the state-of-the-art status on the fabrication strategy of MOFs-based PLs and their CO_(2) absorption and utilization performance,and the positive effects of porosity and functional modification on the absorption-desorption property,selectivity of target product,and regeneration ability are well summarized.Finally,the challenges and prospects for MOFs-based PLs in the optimization of preparation,the coupling of multiple removal techniques,the in situ characterization methods,the regeneration and cycle stability,the environmental impact as well as expansion of application are proposed. 展开更多
关键词 MOFs-based porous liquids Carbon dioxide capturE Catalytic conversion
在线阅读 下载PDF
Superhydrophobic ceramic membrane coupled with a biphasic solvent for efficient CO_(2)capture
20
作者 Kaili Xue Zhen Chen +3 位作者 Xiaona Wu Heng Zhang Haiping Chen Junhua Li 《Green Energy & Environment》 2025年第4期834-844,共11页
An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modif... An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modification through silane grafting,followed by fluoroalkylsilane decoration,to prepare the superhydrophobic membrane(CSCM).The CSCM significantly improved resistance to wetting by the biphasic solvent,consisting of amine(DETA)and sulfolane(TMS).Morphological characterizations and chemical analysis revealed the notable enhancements in pore structure and hydrophobic chemical groups for the modified membrane.Predictions of wetting/bubbling behavior based on static wetting theory referred the liquid entry pressure(LEP)of CSCM increased by 20 kPa compared to pristine CM.Compared with traditional amine solvents,the biphasic solvent presented the expected phase separation.Performance experiments demonstrated that the CO_(2) capture efficiency of the biphasic solvent increased by 7%,and the electrical energy required for desorption decreased by 32%.The 60-h continuous testing and supplemental characterization of used membrane confirmed the excellent adaptability and durability of the CSCMs.This study provides a potential approach for accessing hydrophobic ceramic membranes and biphasic solvents for industrial CO_(2) capture. 展开更多
关键词 Carbon capture Membrane contactor Hydrophobic modification Membrane wetting Biphasic solvent
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部