期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
1
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
在线阅读 下载PDF
Generalized Norm Optimal Iterative Learning Control with Intermediate Point and Sub-interval Tracking 被引量:2
2
作者 David H.Owens Chris T.Freeman Bing Chu 《International Journal of Automation and computing》 EI CSCD 2015年第3期243-253,共11页
Norm optimal iterative learning control(NOILC) has recently been applied to iterative learning control(ILC) problems in which tracking is only required at a subset of isolated time points along the trial duration. Thi... Norm optimal iterative learning control(NOILC) has recently been applied to iterative learning control(ILC) problems in which tracking is only required at a subset of isolated time points along the trial duration. This problem addresses the practical needs of many applications, including industrial automation, crane control, satellite positioning and motion control within a medical stroke rehabilitation context. This paper provides a substantial generalization of this framework by providing a solution to the problem of convergence at intermediate points with simultaneous tracking of subsets of outputs to reference trajectories on subintervals. This formulation enables the NOILC paradigm to tackle tasks which mix "point to point" movements with linear tracking requirements and hence substantially broadens the application domain to include automation tasks which include welding or cutting movements, or human motion control where the movement is restricted by the task to straight line and/or planar segments. A solution to the problem is presented in the framework of NOILC and inherits NOILC s well-defined convergence properties. Design guidelines and supporting experimental results are included. 展开更多
关键词 iterative learning control learning control optimization linear systems robotics.
原文传递
Limiting Behaviour in Parameter Optimal Iterative Learning Control 被引量:1
3
作者 David H.Owens Maria Tomas-Rodriguez Jari J.Hat(o|¨)nen 《International Journal of Automation and computing》 EI 2006年第3期222-228,共7页
This paper analyses the concept of a Limit Set in Parameter Optimal Iterative Learning Control (ILC). We investigate the existence of stable and unstable parts of Limit Set and demonstrates that they will often exis... This paper analyses the concept of a Limit Set in Parameter Optimal Iterative Learning Control (ILC). We investigate the existence of stable and unstable parts of Limit Set and demonstrates that they will often exist in practice. This is illustrated via a 2-dimensional example where the convergence of the learning algorithm is analyzed from the error's dynamic behaviour. These ideas are extended to the N-dimensional cases by analogy and example. 展开更多
关键词 learning control iterative systems optimization nonlinear systems
在线阅读 下载PDF
Quasi-Newton-type optimized iterative learning control for discrete linear time invariant systems 被引量:2
4
作者 Yan GENG Xiaoe RUAN 《Control Theory and Technology》 EI CSCD 2015年第3期256-265,共10页
In this paper, a quasi-Newton-type optimized iterative learning control (ILC) algorithm is investigated for a class of discrete linear time-invariant systems. The proposed learning algorithm is to update the learnin... In this paper, a quasi-Newton-type optimized iterative learning control (ILC) algorithm is investigated for a class of discrete linear time-invariant systems. The proposed learning algorithm is to update the learning gain matrix by a quasi-Newton-type matrix instead of the inversion of the plant. By means of the mathematical inductive method, the monotone convergence of the proposed algorithm is analyzed, which shows that the tracking error monotonously converges to zero after a finite number of iterations. Compared with the existing optimized ILC algorithms, due to the superlinear convergence of quasi-Newton method, the proposed learning law operates with a faster convergent rate and is robust to the ill-condition of the system model, and thus owns a wide range of applications. Numerical simulations demonstrate the validity and effectiveness. 展开更多
关键词 iterative learning control optimization quasi-Newton method inverse plant
原文传递
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems 被引量:1
5
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
在线阅读 下载PDF
Filter-based iterative learning control for linear large-scale industrial processes 被引量:4
6
作者 Xiao'eRUAN JianguoWANG BaiwuWAN 《控制理论与应用(英文版)》 EI 2004年第2期149-154,共6页
In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To... In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy, 展开更多
关键词 iterative learning control Large-scale industrial processes Steady-state optimization Dynamic performance
在线阅读 下载PDF
Decentralized Iterative Learning Controllers for Nonlinear Large-scale Systems to Track Trajectories with Different Magnitudes 被引量:3
7
作者 RUAN Xiao-E CHEN Feng-Min WAN Bai-Wu 《自动化学报》 EI CSCD 北大核心 2008年第4期426-432,共7页
在为大规模工业进程的层次不变的优化编程,一种可行技术是使用真实系统的信息以便修改基于模型的最佳。在这种情形,有不同大小的步功能类型控制决定的一个序列被计算,由哪个真实系统连续地被刺激。在这份报纸,一套反复的学习控制器... 在为大规模工业进程的层次不变的优化编程,一种可行技术是使用真实系统的信息以便修改基于模型的最佳。在这种情形,有不同大小的步功能类型控制决定的一个序列被计算,由哪个真实系统连续地被刺激。在这份报纸,一套反复的学习控制器为大规模非线性的工业过程的一个班在分散的模式被嵌进层次不变的优化的过程。为每个分系统的控制器被用来产生升级的控制信号的一个序列以便与不同规模承担顺序的步骤控制决定的责任。学习控制设计的目的是连续地精制系统的短暂性能。借助于卷绕旋转积分的 Hausdorff 年轻的不平等,更新的规则的集中在 Lebesgue-p 标准的意义被分析。集中上的非线性和相互作用的发明被讨论。建议控制计划的有效性和有效性被一些模拟表明。 展开更多
关键词 恒星 非线性控制系统 轨迹 星等
在线阅读 下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:11
8
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
在线阅读 下载PDF
Controller Optimization for Multirate Systems Based on Reinforcement Learning 被引量:3
9
作者 Zhan Li Sheng-Ri Xue +1 位作者 Xing-Hu Yu Hui-Jun Gao 《International Journal of Automation and computing》 EI CSCD 2020年第3期417-427,共11页
The goal of this paper is to design a model-free optimal controller for the multirate system based on reinforcement learning.Sampled-data control systems are widely used in the industrial production process and multir... The goal of this paper is to design a model-free optimal controller for the multirate system based on reinforcement learning.Sampled-data control systems are widely used in the industrial production process and multirate sampling has attracted much attention in the study of the sampled-data control theory.In this paper,we assume the sampling periods for state variables are different from periods for system inputs.Under this condition,we can obtain an equivalent discrete-time system using the lifting technique.Then,we provide an algorithm to solve the linear quadratic regulator(LQR)control problem of multirate systems with the utilization of matrix substitutions.Based on a reinforcement learning method,we use online policy iteration and off-policy algorithms to optimize the controller for multirate systems.By using the least squares method,we convert the off-policy algorithm into a model-free reinforcement learning algorithm,which only requires the input and output data of the system.Finally,we use an example to illustrate the applicability and efficiency of the model-free algorithm above mentioned. 展开更多
关键词 Multirate system reinforcement learning policy iteration optimal control controller optimization
原文传递
Characterization of terminal region for MPC with multiplicative uncertainty:an iterative learning optimization approach
10
作者 Yang SUN Wenchao XUE +1 位作者 Jizhen LIU Hui DENG 《Science China(Technological Sciences)》 2025年第8期213-225,共13页
In the stability framework of model predictive control(MPC),the size of the stabilizable set(also known as the region of attraction)is dependent on the terminal constraint region.This article aims to investigate the o... In the stability framework of model predictive control(MPC),the size of the stabilizable set(also known as the region of attraction)is dependent on the terminal constraint region.This article aims to investigate the optimization of the terminal region for predictive control of a class of systems with multiplicative uncertainty,aiming to expand the attraction region in MPC.By utilizing a coordinate transformation,we initially develop a structured design for terminal ingredients while considering uncertainties in parameters.Subsequently,we propose novel methods to convert the original nonlinear problem into a linear matrix inequality(LMI)problem with minimal conservatism in the formulation.We propose an iterative learning optimization approach to compute the polytopic terminal region,and its incremental volume is theoretically proven.The efectiveness of the proposed approaches is demonstrated using a benchmark academic example and vehicle lateral dynamics.Through real-time simulation experiments,we demonstrate that the proposed approach can enlarge the domain of attraction as well as reduce the computational complexity of robust MPC systems under parameter uncertainty. 展开更多
关键词 uncertain systems model predictive control terminal region iterative learning optimization
原文传递
Batch Process Modelling and Optimal Control Based on Neural Network Model 被引量:6
11
作者 JieZhang 《自动化学报》 EI CSCD 北大核心 2005年第1期19-31,共13页
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,... This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process. 展开更多
关键词 批量处理 神经网络模型 聚合 重复学习控制 最佳控制
在线阅读 下载PDF
Data-driven iterative learning trajectory tracking control for wheeled mobile robot under constraint of velocity saturation
12
作者 Xiaodong Bu Xisheng Dai Rui Hou 《IET Cyber-Systems and Robotics》 EI 2023年第2期37-47,共11页
Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop co... Considering the wheeled mobile robot(WMR)tracking problem with velocity saturation,we developed a data‐driven iterative learning double loop control method with constraints.First,the authors designed an outer loop controller to provide virtual velocity for the inner loop according to the position and pose tracking error of the WMR kinematic model.Second,the authors employed dynamic linearisation to transform the dynamic model into an online data‐driven model along the iterative domain.Based on the measured input and output data of the dynamic model,the authors identified the parameters of the inner loop controller.The authors considered the velocity saturation constraints;we adjusted the output velocity of the WMR online,providing effective solutions to the problem of velocity saltation and the saturation constraint in the tracking process.Notably,the inner loop controller only uses the output data and input of the dynamic model,which not only enables the reliable control of WMR trajectory tracking,but also avoids the influence of inaccurate model identification processes on the tracking performance.The authors analysed the algorithm's convergence in theory,and the results show that the tracking errors of position,angle and velocity can converge to zero in the iterative domain.Finally,the authors used a simulation to demonstrate the effectiveness of the algorithm. 展开更多
关键词 data-driven control dynamic model iterative learning control trajectory tracking velocity saturation wheeled mobile robot
原文传递
变区间最优带遗忘因子迭代学习控制算法
13
作者 戴宝林 罗雨霜 厚亚飞 《机床与液压》 北大核心 2025年第13期112-117,共6页
针对传统时变遗忘因子迭代学习控制(ILCFF)算法中遗忘因子需依靠经验确定且缺乏取值依据等问题,提出一种基于最优控制增益与可变修正区间的最优ILCFF算法。该算法在已有最优ILCFF算法基础上,引入矩阵范数构建涵盖迭代轴和时间轴的遗忘... 针对传统时变遗忘因子迭代学习控制(ILCFF)算法中遗忘因子需依靠经验确定且缺乏取值依据等问题,提出一种基于最优控制增益与可变修正区间的最优ILCFF算法。该算法在已有最优ILCFF算法基础上,引入矩阵范数构建涵盖迭代轴和时间轴的遗忘因子二维修正区间,通过在该区间单独设置遗忘因子值,实现局部干扰抑制。该算法突破了传统时变遗忘因子必须在多次迭代后趋近于1的设计思路,理论推导证明了算法收敛性,并给出了算法收敛条件。同时,证明了系统输出跟踪误差趋于稳定后,局部增大遗忘因子可以进一步减小系统输出跟踪误差。该算法结构简单,计算量小,在保证系统收敛速度的同时进一步减小了系统输出跟踪误差,抑制系统干扰效果较好。最后,通过仿真验证了算法的有效性。 展开更多
关键词 迭代学习控制 最优控制增益 可变修正区间 遗忘因子
在线阅读 下载PDF
参数蚁群优化的含间隙机械臂迭代学习控制 被引量:1
14
作者 王新培 谢凌波 +1 位作者 蒋勉 杨铭健 《控制工程》 北大核心 2025年第3期553-563,共11页
磨损间隙严重制约长期重载工况下工业机械臂的精准控制。以含磨损间隙的选择顺应性装配机械臂(selective compliance assembly robot arm,SCARA)为研究对象,提出基于参数蚁群优化的迭代学习控制方法,用于实现含间隙机械臂的高精度运动... 磨损间隙严重制约长期重载工况下工业机械臂的精准控制。以含磨损间隙的选择顺应性装配机械臂(selective compliance assembly robot arm,SCARA)为研究对象,提出基于参数蚁群优化的迭代学习控制方法,用于实现含间隙机械臂的高精度运动控制。首先,基于改进的Archard磨损方程建立不同位姿的时变间隙模型,并结合无间隙机械臂运动学方程建立考虑磨损间隙的整体运动学模型。然后,鉴于机械臂的结构变形、检测误差等干扰影响,应用蚁群优化算法和迭代学习算法,设计机械臂的精准控制方法。同时,通过概率分析对此控制方法进行收敛性证明,并采用多种运动轨迹验证控制效果。研究结果表明,参数蚁群优化的迭代学习控制方法可以在多种运动轨迹下保证含间隙机械臂的精准稳定控制。 展开更多
关键词 工业机械臂 间隙磨损 精准控制 蚁群优化 迭代学习
原文传递
多智能体系统的一致性数据驱动最优迭代学习控制
15
作者 耿燕 常杜辉 贺兴时 《西安工程大学学报》 2025年第2期118-126,共9页
为提高多智能体系统的跟踪性能和放宽算法的收敛性条件,设计一种数据驱动的最优迭代学习控制策略。针对一类线性时不变的多智能体系统,通过最小化预测输出与实际输出的残差与相邻估计差值的和,构建参数估计算法来估计系统参数。以虚拟... 为提高多智能体系统的跟踪性能和放宽算法的收敛性条件,设计一种数据驱动的最优迭代学习控制策略。针对一类线性时不变的多智能体系统,通过最小化预测输出与实际输出的残差与相邻估计差值的和,构建参数估计算法来估计系统参数。以虚拟领导者来替代期望轨迹,在通讯拓扑的基础上,通过优化智能体一致跟踪误差与控制差值和的指标函数,并将估计的参数嵌入到学习律中,设计了最优迭代学习控制律。结果表明参数估计误差有界,系统的跟踪误差单调收敛。通过数值仿真验证了设计的控制策略的有效性。 展开更多
关键词 迭代学习控制 多智能体系统 数据驱动 参数估计算法 最优控制
在线阅读 下载PDF
强化学习驱动的重介分选密度优化控制研究与应用
16
作者 宋万军 白龙 《煤炭科技》 2025年第4期29-34,共6页
针对重介质分选密度回路流程及其相关特性进行深入研究和分析,提出了基于在线无模型强化学习的优化控制方法,使重介质分选悬浮液密度控制系统渐近稳定,并在线跟踪悬浮液密度设定值,提高了重介质分选的效率和精度。同时,利用MATLAB仿真... 针对重介质分选密度回路流程及其相关特性进行深入研究和分析,提出了基于在线无模型强化学习的优化控制方法,使重介质分选悬浮液密度控制系统渐近稳定,并在线跟踪悬浮液密度设定值,提高了重介质分选的效率和精度。同时,利用MATLAB仿真实验对该优化控制方法进行了仿真与验证。结果表明,该方法具有精确的控制效果。 展开更多
关键词 重介分选过程 强化学习 策略迭代 优化控制 最优性能指标
在线阅读 下载PDF
Run-to-run product quality control of batch processes
17
作者 贾立 施继平 +1 位作者 程大帅 邱铭森 《Journal of Shanghai University(English Edition)》 CAS 2009年第4期267-269,共3页
Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In th... Batch processes have been increasingly used in the production of low volume and high value added products. Consequently, optimization control in batch processes is crucial in order to derive the maximum benefit. In this paper, a run-to-run product quality control based on iterative learning optimization control is developed. Moreover, a rigorous theorem is proposed and proven in this paper, which states that the tracking error under the optimal iterative learning control (ILC) law can converge to zero. In this paper, a typical nonlinear batch continuous stirred tank reactor (CSTR) is considered, and the results show that the performance of trajectory tracking is gradually improved by the ILC. 展开更多
关键词 iterative learning optimization control tracking error batch processes
在线阅读 下载PDF
基于数据驱动的范数最优迭代学习控制 被引量:2
18
作者 许万 肖迪 陈婷薇 《湖北工业大学学报》 2024年第2期1-4,16,共5页
在系统模型确定的前提下,传统的范数最优迭代学习控制(NOILC)可以有效提高伺服系统的跟踪精度。但是在实际控制过程中,系统模型参数往往是变化的,从而导致控制器性能的下降。为此,提出了一种基于数据驱动的范数最优迭代学习控制方法。... 在系统模型确定的前提下,传统的范数最优迭代学习控制(NOILC)可以有效提高伺服系统的跟踪精度。但是在实际控制过程中,系统模型参数往往是变化的,从而导致控制器性能的下降。为此,提出了一种基于数据驱动的范数最优迭代学习控制方法。以系统的输入输出为依据,建立系统估计模型的代价函数,对代价函数进行偏微分处理,得到一种基于数据驱动的非参数模型辨识方法,最后将此模型辨识方法和NOILC相结合。实验结果表明:针对时变系统,此控制方法的跟踪误差为NOILC(Norm optimal iterative learning control,NOILC)的57.1%,并且相比NOILC提前5次收敛。因此,提出的方法能有效改善时变系统的跟踪性能。 展开更多
关键词 迭代学习 数据驱动 范数最优 运动控制
在线阅读 下载PDF
基于改进涡流搜索算法的外骨骼迭代学习控制
19
作者 钟佩思 张大卫 +1 位作者 张超 王晓 《计算机应用研究》 CSCD 北大核心 2024年第3期873-879,共7页
为提升康复外骨骼机器人的步态跟踪性能,提出一种基于改进涡流搜索算法的迭代学习控制方法。首先针对传统迭代学习控制抗扰性差和控制信息缺失问题,引入PD控制器、自适应遗忘因子、误差过渡曲线和控制信息搜索等策略,改进迭代学习控制律... 为提升康复外骨骼机器人的步态跟踪性能,提出一种基于改进涡流搜索算法的迭代学习控制方法。首先针对传统迭代学习控制抗扰性差和控制信息缺失问题,引入PD控制器、自适应遗忘因子、误差过渡曲线和控制信息搜索等策略,改进迭代学习控制律;其次,基于多种策略对涡流搜索算法进行改进,提出了一种改进涡流搜索算法,改进后的算法可优化迭代学习控制的PD参数;最后进行行走实验,将提出的迭代学习控制方法与现有的同类算法进行仿真和数值比较,并测试了扰动情况下的跟踪性能。实验结果表明,所提方法的误差更小,跟踪性能更强。该算法改进了迭代学习控制的不足,具有较强的抗扰性能,保证了使用时的稳定性。 展开更多
关键词 迭代学习控制 涡流搜索算法 步态跟踪 外骨骼机器人 轨迹过渡 参数优化
在线阅读 下载PDF
基于非参数模型辨识的机床伺服系统OILC跟踪研究
20
作者 杨光 寇爽 +1 位作者 路晓云 李峰 《机械设计与研究》 CSCD 北大核心 2024年第6期319-323,共5页
以机床伺服系统具有时变特征为基础,将最优迭代学习控制(OILC)和非参数模型(NMI)识别深度融合,提出了一种NMI-OILC算法。对机床伺服系统持续性识别,有效填补OILC难以应对系统时变缺陷。利用该算法对伺服系统运动过程进行控制,具备较强... 以机床伺服系统具有时变特征为基础,将最优迭代学习控制(OILC)和非参数模型(NMI)识别深度融合,提出了一种NMI-OILC算法。对机床伺服系统持续性识别,有效填补OILC难以应对系统时变缺陷。利用该算法对伺服系统运动过程进行控制,具备较强的跟踪性能。仿真结果表明:在参数缓慢变化情况下,NMI-OILC的性能会暂时下降,经过数次迭代后渐渐趋向于收敛,跟踪误差同样符合要求。即使是对于参数变化的情况,NMI-OILC仍有较强的跟踪性能。实验结果表明:在系统参数改变后,NMI-OILC算法能够让目标函数渐渐趋向于收敛,跟踪误差符合控制要求,能够高效应对系统的时变特征,大大提高系统的跟踪能力。该研究可以拓展到其它的机械传动的参数识别领域,具有很好的应用价值。 展开更多
关键词 迭代学习 伺服系统 参数辨识 最优控制
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部