期刊文献+
共找到777,268篇文章
< 1 2 250 >
每页显示 20 50 100
A data-driven methodology to predict ice-induced aerodynamic degradation applied to aircraft tailplane design
1
作者 Salvatore CORCIONE Agostino DE MARCO Vincenzo CUSATI 《Chinese Journal of Aeronautics》 2025年第8期328-346,共19页
This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive mod... This study presents a data-driven approach to predict tailplane aerodynamics in icing conditions,supporting the ice-tolerant design of aircraft horizontal stabilizers.The core of this work is a low-cost predictive model for analyzing icing effects on swept tailplanes.The method relies on a multi-fidelity data gathering campaign,enabling seamless integration into multidisciplinary aircraft design workflows.A dataset of iced airfoil shapes was generated using 2D inviscid methods across various flight conditions.High-fidelity CFD simulations were conducted on both clean and iced geometries,forming a multidimensional aerodynamic database.This 2D database feeds a nonlinear vortex lattice method to estimate 3D aerodynamic characteristics,following a'quasi-3D'approach.The resulting reduced-order model delivers fast aerodynamic performance estimates of iced tailplanes.To demonstrate its effectiveness,optimal ice-tolerant tailplane designs were selected from a range of feasible shapes based on a reference transport aircraft.The analysis validates the model's reliability,accuracy,and limitations concerning 3D ice shapes and aerodynamic characteristics.Most notably,the model offers near-zero computational cost compared to high-fidelity simulations,making it a valuable tool for efficient aircraft design. 展开更多
关键词 data-driven aerodynamics Forward swept tailplane Gaussian process regression Ice accretion prediction Machine learning for icing analysis
原文传递
Data-driven methods for predicting the representative temperature of bridge cable based on limited measured data
2
作者 WANG Fen DAI Gong-lian +2 位作者 HE Chang-lin GE Hao RAO Hui-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3168-3186,共19页
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai... Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridges representative temperature gradient boosted regression trees(GBRT)method field test limited measured data
在线阅读 下载PDF
Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure 被引量:3
3
作者 Jie Cai Xiaoli Jiang +2 位作者 Yazhou Yang Gabriel Lodewijks Minchang Wang 《Journal of Marine Science and Application》 CSCD 2022年第2期115-132,共18页
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p... A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines. 展开更多
关键词 Pipelines CORROSION Burst strength Internal pressure data-driven method Machine learning
在线阅读 下载PDF
Leveraging Bayesian methods for addressing multi-uncertainty in data-driven seismic liquefaction assessment
4
作者 Zhihui Wang Roberto Cudmani +2 位作者 Andrés Alfonso Peña Olarte Chaozhe Zhang Pan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2474-2491,共18页
When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding bia... When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis. 展开更多
关键词 data-driven method Bayes analysis Seismic liquefaction UNCERTAINTY Neural network
在线阅读 下载PDF
A data-driven PCA-RF-VIM method to identify key factors driving post-fracturing gas production of tight reservoirs
5
作者 Yifan Zhao Xiaofan Li +5 位作者 Lei Zuo Zhongtai Hu Liangbin Dou Huagui Yu Tiantai Li Jun Lu 《Energy Geoscience》 2025年第2期436-450,共15页
Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysi... Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysis methods have limitations in dealing with these complex and interrelated factors,and it is difficult to fully reveal the actual contribution of each factor to the production.Machine learning-based methods explore the complex mapping relationships between large amounts of data to provide datadriven insights into the key factors driving production.In this study,a data-driven PCA-RF-VIM(Principal Component Analysis-Random Forest-Variable Importance Measures)approach of analyzing the importance of features is proposed to identify the key factors driving post-fracturing production.Four types of parameters,including log parameters,geological and reservoir physical parameters,hydraulic fracturing design parameters,and reservoir stimulation parameters,were inputted into the PCA-RF-VIM model.The model was trained using 6-fold cross-validation and grid search,and the relative importance ranking of each factor was finally obtained.In order to verify the validity of the PCA-RF-VIM model,a consolidation model that uses three other independent data-driven methods(Pearson correlation coefficient,RF feature significance analysis method,and XGboost feature significance analysis method)are applied to compare with the PCA-RF-VIM model.A comparison the two models shows that they contain almost the same parameters in the top ten,with only minor differences in one parameter.In combination with the reservoir characteristics,the reasonableness of the PCA-RF-VIM model is verified,and the importance ranking of the parameters by this method is more consistent with the reservoir characteristics of the study area.Ultimately,the ten parameters are selected as the controlling factors that have the potential to influence post-fracturing gas production,as the combined importance of these top ten parameters is 91.95%on driving natural gas production.Analyzing and obtaining these ten controlling factors provides engineers with a new insight into the reservoir selection for fracturing stimulation and fracturing parameter optimization to improve fracturing efficiency and productivity. 展开更多
关键词 data-driven method Controlling factor Hydraulic fracturing Gas production
在线阅读 下载PDF
Optimal design strategy of traditional courtyard based on performance and data-driven method--A case study of Yanshen ancient town, China
6
作者 Zhixin Xu Xin Zheng Xiangfeng Li 《Frontiers of Architectural Research》 2025年第5期1168-1195,共28页
To address the insufficient integration of performance evaluation and contextual analysis in traditional architectural design,this paper proposes a design workflow that combines data-driven and performance-driven appr... To address the insufficient integration of performance evaluation and contextual analysis in traditional architectural design,this paper proposes a design workflow that combines data-driven and performance-driven approaches,establishing a comprehensive operational pathway from typology selection and design generation to performance assessment.Using Yanshen Ancient Town,a cold region,as the study area,the research evaluates 18 traditional courtyard types and 8 brick kiln courtyard types.Benchmark models are selected based on the combined performance of PET(Physiological Equivalent Temperature)and MRT(Mean Radiant Temperature)indices.Subsequently,multiple performance indicators,including indoor and outdoor thermal comfort,indoor illuminance,and building energy consumption,are integrated into the analysis.Using a genetic algorithm,Pareto optimal solutions that meet performance requirements are iteratively optimized and filtered.Based on the learning rates and various evaluation indicators,XGBoost is ultimately selected to classify and predict the overall building performance.Results indicate that the model achieves an average prediction accuracy of 83.6%.Additionally,SHAP analysis of the independent variables in the algorithm reveals distinct influencing trends under different performance labels.The workflow demonstrates the feasibility of incorporating performance prediction in the early design stage of village courtyards,significantly enhancing the efficiency of feedback and follow-up between design decision-making and performance evaluation. 展开更多
关键词 Traditional courtyard Performance and data-driven method Generative design Machine learning
原文传递
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
7
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System
8
作者 LI Songyang CHEN Wenbo WAN Heng 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期270-279,共10页
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands... Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) model predictive control(MPC) data-driven model predictive control(DDMPC)
原文传递
Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method
9
作者 Longqi Li Yunhuang Yang +1 位作者 Tianzhi Zhou Mengyun Wang 《Journal of Earth Science》 2025年第1期291-306,共16页
To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-dec... To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-decomposition associated with kernel-based-extreme-learningmachine optimized by the whale optimization algorithm(VMD-WOA-KELM)is proposed in this paper.Firstly,the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics.The key impact factors of each IMF component are selected according to Copula model,and the corresponding WOA-KELM is established to conduct point prediction.Subsequently,the parametric method(PM)and non-parametric method(NPM)are used to estimate the prediction error probability density distribution(PDF)of each component,whose prediction interval(PI)under the 95%confidence level is also obtained.By means of the differential evolution algorithm(DE),a weighted combination model based on the PIs is built to construct the combination-interval(CI).Finally,the CIs of each component are added to generate the total PI.A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance. 展开更多
关键词 landslide displacement interval prediction combination method COPULA LANDSLIDES VMD-WOA-KELM
原文传递
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
10
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
A data-driven method for feature assessment of historical settlements: A case study of Northeast Hubei, China
11
作者 Gangyi Tan Zhanxiang Chen +1 位作者 Jiangkun Zhu Kai Wang 《Frontiers of Architectural Research》 CSCD 2024年第2期387-405,共19页
Formulating criteria for the assessment system of historic settlements is challenging due to complex geographical conditions and evaluator knowledge limitations, leading to subjective bias in the assessment process. T... Formulating criteria for the assessment system of historic settlements is challenging due to complex geographical conditions and evaluator knowledge limitations, leading to subjective bias in the assessment process. To address this issue, this study proposes a data-driven method for assessing the features of historical settlements to carry out scientific and refined assessment and result analysis. Focusing on Northeast Hubei as the study area, this paper selects 3 historical settlements for validation and analysis. The results of the study show that (1) the data-driven method expands the methodological chain of assessing historical settlement features, and improves the assessment efficiency and scientificity of the assessment results by applying it to the new assessment process;(2) Through comparing the assessment results of the validation cases and data samples, the study establishes a comprehensive quantitative ranking of the assessment of historical settlement features and identifies the main influencing factors, thus enhancing the precision of result analysis;(3) By comparing the resulting assessment framework with the current assessment system, this study confirms the advantages of the proposed framework in identifying nuanced features and aligning with geographical conditions, thereby verifying the effectiveness of the data-driven method. 展开更多
关键词 Historical settlement Feature assessment data-driven method Northeast Hubei
原文传递
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods 被引量:1
12
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers Feature selection
在线阅读 下载PDF
A self-adaptive,data-driven method to predict the cycling life of lithium-ion batteries 被引量:3
13
作者 Chao Han Yu-Chen Gao +5 位作者 Xiang Chen Xinyan Liu Nan Yao Legeng Yu Long Kong Qiang Zhang 《InfoMat》 SCIE CSCD 2024年第4期47-55,共9页
Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a se... Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature. 展开更多
关键词 cycling lifespan prediction lithium-ion batteries long short-term memory method machine learning time series forecasting
原文传递
Hybrid model-driven and data-driven method for predicting concrete creep considering uncertainty quantification
14
作者 Yiming YANG Chengkun ZHOU +3 位作者 Jianxin PENG Chunsheng CAI Huang TANG Jianren ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第10期1524-1539,共16页
Reasonable prediction of concrete creep is the basis of studying long-term deflection of concrete structures.In this paper,a hybrid model-driven and data-driven(HMD)method for predicting concrete creep is proposed by ... Reasonable prediction of concrete creep is the basis of studying long-term deflection of concrete structures.In this paper,a hybrid model-driven and data-driven(HMD)method for predicting concrete creep is proposed by using the sequence integration strategy.Then,a novel uncertainty prediction model(UPM)is developed considering uncertainty quantification.Finally,the effectiveness of the proposed method is validated by using the North-western University(NU)database of creep,and the effect of uncertainty on prediction results are also discussed.The analysis results show that the proposed HMD method outperforms the model-driven and three data-driven methods,including the genetic algorithm-back propagation neural network(GA-BPNN),particle swarm optimization-support vector regression(PSO-SVR)and convolutional neural network only method,in accuracy and time efficiency.The proposed UPM of concrete creep not only ensures relatively good prediction accuracy,but also quantifies the model and measurement uncertainties during the prediction process.Additionally,although incorporating measurement uncertainty into concrete creep prediction can improve the prediction performance of UPM,the prediction interval of the creep compliance is more sensitive to model uncertainty than to measurement uncertainty,and the mean contribution of variance attributed to the model uncertainty to the total variance is about 90%. 展开更多
关键词 concrete creep uncertainty prediction hybrid method data-driven model-driven convolutional neural network
原文传递
An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network
15
作者 Liang Xue Shuai Xu +4 位作者 Jie Nie Ji Qin Jiang-Xia Han Yue-Tian Liu Qin-Zhuo Liao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2475-2484,共10页
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively... The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages. 展开更多
关键词 Shale gas Global sensitivity Convolutional neural network data-driven
原文传递
A comprehensive review on the development of data-driven methods for wind power prediction and AGC performance evaluation in wind–thermal bundled power systems
16
作者 Shuai Wang Bin Li +4 位作者 Guanzheng Li Botong Li Hongbo Li Kui Jiao Chengshan Wang 《Energy and AI》 EI 2024年第2期450-463,共14页
The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal b... The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal bundled power system, accurate data-driven analysis is necessary to maintain real-time balance between electricity supply and demand. By summarizing the development and characteristics of wind–thermal bundled power system in China and different countries, current research in this field can be clearly defined in two aspects: short-term wind power prediction for wind farms and performance evaluation of automatic generation control (AGC) for thermal power generation units. For short-term wind power prediction, it is recommended to focus on historical data preprocessing and artificial intelligence methods. The technical characteristics of different data-driven wind power prediction methods have been compared in detail. For performance evaluation of AGC units, a comprehensive analysis was conducted on current evaluation methods, including the “permitted-band” and “regulation mileage” methods, as well as the issue of evaluation failure in traditional evaluation methods in practical engineering. Finally, the relative optimal dynamic performance of AGC units was discussed and the future trend of data-driven research in wind–thermal bundled power system was summarized. 展开更多
关键词 Wind power prediction Automatic generation control Performance evaluation data-driven Feature analysis
在线阅读 下载PDF
Data-Driven Adaptive Predictive Control Method With Autotuned Weighting Factor for Nonlinear Systems Using Triangular Dynamic Linearization
17
作者 Zhong-Hua Pang Yumo Zhang +2 位作者 Xueyuan Sun Shengnan Gao Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1880-1882,共3页
Dear Editor,In this letter,a novel data-driven adaptive predictive control method is proposed using the triangular dynamic linearization technique.The proposed method only contains one time-varying parameter with expl... Dear Editor,In this letter,a novel data-driven adaptive predictive control method is proposed using the triangular dynamic linearization technique.The proposed method only contains one time-varying parameter with explicit physical meaning,which can prevent severe deviation in parameter estimation.Specifically,a triangular dynamic linearization(TDL)data model is employed to predict future system outputs,and then to correct inaccurate predictive outputs,a feedback regulator is designed.An autotuned weighing factor is introduced to alleviate the computational burden in practical applications and further improve output tracking performance.Closed-loop stability conditions are derived by rigorous analysis.Simulation results are provided to demonstrate the efficacy of the proposed method. 展开更多
关键词 ESTIMATION TECHNIQUE method
在线阅读 下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group 被引量:1
18
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model Convolutional Neural Network(CNN) Finite Element method(FEM)
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method 被引量:1
19
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method PROPPANT SPHERICITY CFD-DEM
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
20
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部