期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Deep Support Vector Data Description Based Physical Layer Authentication
1
作者 Shao Yijie Pan Zhiwen +1 位作者 Liu Nan You Xiaohu 《China Communications》 2025年第10期214-222,共9页
In wireless communication,the problem of authenticating the transmitter’s identity is challeng-ing,especially for those terminal devices in which the security schemes based on cryptography are approxi-mately unfeasib... In wireless communication,the problem of authenticating the transmitter’s identity is challeng-ing,especially for those terminal devices in which the security schemes based on cryptography are approxi-mately unfeasible owing to limited resources.In this paper,a physical layer authentication scheme is pro-posed to detect whether there is anomalous access by the attackers disguised as legitimate users.Explicitly,channel state information(CSI)is used as a form of fingerprint to exploit spatial discrimination among de-vices in the wireless network and machine learning(ML)technology is employed to promote the improve-ment of authentication accuracy.Considering that the falsified messages are not accessible for authenticator during the training phase,deep support vector data de-scription(Deep SVDD)is selected to solve the one-class classification(OCC)problem.Simulation results show that Deep SVDD based scheme can tackle the challenges of physical layer authentication in wireless communication environments. 展开更多
关键词 deep support vector data description one-class classification physical layer authentication wireless security
在线阅读 下载PDF
kProtoClust:Towards Adaptive k-Prototype Clustering without Known k
2
作者 Yuan Ping Huina Li +1 位作者 Chun Guo Bin Hao 《Computers, Materials & Continua》 2025年第3期4949-4976,共28页
Towards optimal k-prototype discovery,k-means-like algorithms give us inspirations of central samples collection,yet the unstable seed samples selection,the hypothesis of a circle-like pattern,and the unknown K are st... Towards optimal k-prototype discovery,k-means-like algorithms give us inspirations of central samples collection,yet the unstable seed samples selection,the hypothesis of a circle-like pattern,and the unknown K are still challenges,particularly for non-predetermined data patterns.We propose an adaptive k-prototype clustering method(kProtoClust)which launches cluster exploration with a sketchy division of K clusters and finds evidence for splitting and merging.On behalf of a group of data samples,support vectors and outliers from the perspective of support vector data description are not the appropriate candidates for prototypes,while inner samples become the first candidates for instability reduction of seeds.Different from the representation of samples in traditional,we extend sample selection by encouraging fictitious samples to emphasize the representativeness of patterns.To get out of the circle-like pattern limitation,we introduce a convex decomposition-based strategy of one-cluster-multiple-prototypes in which convex hulls of varying sizes are prototypes,and accurate connection analysis makes the support of arbitrary cluster shapes possible.Inspired by geometry,the three presented strategies make kProtoClust bypassing the K dependence well with the global and local position relationship analysis for data samples.Experimental results on twelve datasets of irregular cluster shape or high dimension suggest that kProtoClust handles arbitrary cluster shapes with prominent accuracy even without the prior knowledge K. 展开更多
关键词 Prototype finding convex hull support vector data description geometrical information
在线阅读 下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
3
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
A New Vector Data Compression Approach for WebGIS 被引量:2
4
作者 LIYunjin ZHONG Ershun 《Geo-Spatial Information Science》 2011年第1期48-53,共6页
High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new comp... High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new compression approach.This paper begins with the generation of multiscale data by converting float coordinates to integer coordinates.It is proved that the distance between the converted point and the original point on screen is within 2 pixels,and therefore,our approach is suitable for the visualization of vector data on the client side.Integer coordinates are passed to an Integer Wavelet Transformer,and the high-frequency coefficients produced by the transformer are encoded by Canonical Huffman codes.The experimental results on river data and road data demonstrate the effectiveness of the proposed approach:compression ratio can reach 10% for river data and 20% for road data,respectively.We conclude that more attention needs be paid to correlation between curves that contain a few points. 展开更多
关键词 vector data compression WEBGIS progressive data transmission
原文传递
A spatial decomposition approach for accelerating buffer analysis of vector data 被引量:1
5
作者 Li Xiaohua Guo Mingqiang Qi Xinhong 《High Technology Letters》 EI CAS 2020年第4期455-459,共5页
Parallel vector buffer analysis approaches can be classified into 2 types:algorithm-oriented parallel strategy and the data-oriented parallel strategy.These methods do not take its applicability on the existing geogra... Parallel vector buffer analysis approaches can be classified into 2 types:algorithm-oriented parallel strategy and the data-oriented parallel strategy.These methods do not take its applicability on the existing geographic information systems(GIS)platforms into consideration.In order to address the problem,a spatial decomposition approach for accelerating buffer analysis of vector data is proposed.The relationship between the number of vertices of each feature and the buffer analysis computing time is analyzed to generate computational intensity transformation functions(CITFs).Then,computational intensity grids(CIGs)of polyline and polygon are constructed based on the relative CITFs.Using the corresponding CIGs,a spatial decomposition method for parallel buffer analysis is developed.Based on the computational intensity of the features and the sub-domains generated in the decomposition,the features are averagely assigned within the sub-domains into parallel buffer analysis tasks for load balance.Compared with typical regular domain decomposition methods,the new approach accomplishes greater balanced decomposition of computational intensity for parallel buffer analysis and achieves near-linear speedups. 展开更多
关键词 high performance spatial computing buffer analysis parallel computing load balancing vector data
在线阅读 下载PDF
A method for rapid transmission of multi-scale vector river data via the Internet 被引量:1
6
作者 Yang Weifang Jonathon Li 《Geodesy and Geodynamics》 2012年第2期34-41,共8页
Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T... Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well. 展开更多
关键词 vector river data MULTI-SCALE progressive transmission river structure
原文传递
Assessment of distortion in watermarked geospatial vector data using different wavelets
7
作者 Sangita ZOPE-CHAUDHARI Parvatham VENKATACHALAM Krishna Mohan BUDDHIRAJU 《Geo-Spatial Information Science》 SCIE CSCD 2015年第2期124-133,共10页
With the rapid growth of the Internet,the copyright protection problem occurs frequently,and unauthorized copying and distributing of geospatial data threaten the investments of data producers.Digital watermarking is ... With the rapid growth of the Internet,the copyright protection problem occurs frequently,and unauthorized copying and distributing of geospatial data threaten the investments of data producers.Digital watermarking is a possible solution to solve this issue.However,watermarking causes modifications in the original data resulting in distortion and affects accuracy,which is very important to geospatial vector data.This article provides distortion assessment of watermarked geospatial data using wavelet-based invisible watermarking.Eight wavelets at different wavelet decomposition levels are used for accuracy evaluation with the help of error measures such as maximum error and mean square error.Normalized correlation is used as a similarity index between original and extracted watermark.It is observed that the increase in the strength of embedding increases visual degradation.Haar wavelet outperforms the other wavelets,and the third wavelet decomposition level is proved to be optimal level for watermarking. 展开更多
关键词 digital watermarking geospatial vector data WAVELETS discrete wavelet transform(DWT) DISTORTION
原文传递
Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion
8
作者 Liu Xing Hu Guangdao Qiu Yubao Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期278-282,共5页
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper... The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly. 展开更多
关键词 geological data GIS-based vector data conversion image processing multi-source data fusion
在线阅读 下载PDF
A Dual-Task Learning Approach for Bearing Anomaly Detection and State Evaluation of Safe Region
9
作者 Yuhua Yin Zhiliang Liu +1 位作者 Bin Guo Mingjian Zuo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期229-241,共13页
Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o... Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions. 展开更多
关键词 Bearing condition monitoring Anomaly detection Safe region Support vector data description
在线阅读 下载PDF
ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2
10
作者 陈斌 李斌 +1 位作者 冯爱民 潘志松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t... One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 展开更多
关键词 one-class support vector machine(OCSVM) support vector data description(SVDD) kernel density estimation
在线阅读 下载PDF
Rolling bearing performance degradation evaluation by VMD and embedding selection-based NPE 被引量:5
11
作者 Tong Qingjun Hu Jianzhong +1 位作者 Jia Minping Xu Feiyun 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期408-416,共9页
In order to improve the incipient fault sensitivity and stability of degradation index in the rolling bearing performance degradation evaluation process,an embedding selection-based neighborhood preserving embedding(E... In order to improve the incipient fault sensitivity and stability of degradation index in the rolling bearing performance degradation evaluation process,an embedding selection-based neighborhood preserving embedding(ESNPE)method is proposed.Firstly,the acquired vibration signals are decomposed by variational mode decomposition(VMD),and the singular value and relative energy of each intrinsic mode function(IMF)are extracted to form a high-dimensional feature set.Then,the NPE manifold learning method is used to extract the embedded features in the feature space.Considering the problem that useful embedding information is easily suppressed in NPE,an embedding selection strategy is built based on the Spearman correlation coefficient.The effectiveness of embeddings is measured by the coefficient absolute value,and useful embeddings are preserved in the early stage of bearing degradation by using the first-order difference method.Finally,the degradation index is established using the support vector data description(SVDD)model and bearing performance degradation evaluation is achieved.The proposed method was tested with the whole life experiment data of a rolling bearing,and the result was compared with the feature extraction methods of traditional principal component analysis(PCA)and NPE.The results show that the proposed method is superior in improving the incipient fault sensitivity and stability of the degradation index. 展开更多
关键词 performance degradation evaluation variational mode decomposition(VMD) neighborhood preserving embedding(NPE) support vector data description(SVDD)
在线阅读 下载PDF
Interactive early warning technique based on SVDD 被引量:6
12
作者 Lin Jian~(1,2) Peng Minjing~(1,2) 1.School of Business Administration,South China Univ.of Technology,Guangzhou 510641,F.R.China 2.Systems Science & Technology Inst,Wuyi Univ.,Jiangmen 529020,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期527-533,共7页
After reviewing current researches on early warning, it is found that “bad”data of some systems is not easy to obtain, which makes methods proposed by these researches unsuitable for monitored systems. An interactiv... After reviewing current researches on early warning, it is found that “bad”data of some systems is not easy to obtain, which makes methods proposed by these researches unsuitable for monitored systems. An interactive early warning technique based on SVDD (support vector data description) is proposed to adopt “good” data as samples to overcome the difficulty in obtaining the “bad” data. The process consists of two parts: (1) A hypersphere is fitted on “good” data using SVDD. If the data object are outside the hypersphere, it would be taken as “suspicious”; (2) A group of experts would decide whether the suspicious data is “bad” or “good”, early warning messages would be issued according to the decisions. And the detailed process of implementation is proposed. At last, an experiment based on data of a macroeconomic system is conducted to verify the proposed technique. 展开更多
关键词 interactive data mining early warning support vector data description group decision making.
在线阅读 下载PDF
A Method of Shield Attitude Working Condition Classification 被引量:1
13
作者 郭正刚 王奉涛 +1 位作者 孙伟 张旭 《Journal of Donghua University(English Edition)》 EI CAS 2012年第3期259-262,共4页
Aiming at solving shield attitude rectification failure problem,a method of shield working condition classification based on support vector data description( SVDD) was introduced. Shield attitude mechanics model conta... Aiming at solving shield attitude rectification failure problem,a method of shield working condition classification based on support vector data description( SVDD) was introduced. Shield attitude mechanics model containing priori knowledge was helpful to feature selection. SVDD handled the one class classification problem and a decision function for attitude rectification was proposed. Experimental results indicate that the method is able to accomplish the shield attitude working condition classification. 展开更多
关键词 SHIELD attitude rectification support vector data description ( SVDD) working condition classification
在线阅读 下载PDF
Life prediction of ZPW-2000A track circuit equipment based on SVDD and gray prediction 被引量:2
14
作者 WANG Rui-feng JIA Nan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第4期373-379,共7页
Evaluation of the health state and prediction of the remaining life of the track circuit are important for the safe operation of the equipment of railway signal system.Based on support vector data description(SVDD)and... Evaluation of the health state and prediction of the remaining life of the track circuit are important for the safe operation of the equipment of railway signal system.Based on support vector data description(SVDD)and gray prediction,this paper illustrates a method of life prediction for ZPW-2000A track circuit,which combines entropy weight method,SVDD,Mahalanobis distance and negative conversion function to set up a health state assessment model.The model transforms multiple factors affecting the health state into a health index named H to reflect the health state of the equipment.According to H,the life prediction model of ZPW-2000A track circuit equipment is established by means of gray prediction so as to predict the trend of health state of the equipment.The certification of the example shows that the method can visually reflect the health state and effectively predict the remaining life of the equipment.It also provides a theoretical basis to further improve the maintenance and management for ZPW-2000A track circuit. 展开更多
关键词 track circuit health state assessment life prediction support vector data description(SVDD) gray prediction
在线阅读 下载PDF
Application of Ray Scanning Method in Color Measurement
15
作者 BIAN Xing-zhong CHEN Bing-ruo GONG Hong-mei 《Semiconductor Photonics and Technology》 CAS 2006年第1期54-57,共4页
A new method based on the traditional method of ray scanning has been introduced to resolve the problem of judging the color in the chromaticity diagram by employing the line segments approximate curve—— using polyg... A new method based on the traditional method of ray scanning has been introduced to resolve the problem of judging the color in the chromaticity diagram by employing the line segments approximate curve—— using polygonal approximate closed curve. Then a vector coordinate could be used to describe the curve instead of curve equations. So it is easy to judge the topology relation between an area and a point or a locus. And any data processing method has been used to save memory, which makes the improved ray scanning method is quite useful in the measurement of color. 展开更多
关键词 Vector data Raster data Topology relation Chromaticity diagram
在线阅读 下载PDF
Design of multisensory integration gripper system for Internet-based teleoperation
16
作者 臧希喆 Cai Hegao 《High Technology Letters》 EI CAS 2007年第1期23-26,共4页
A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-mac... A layered architecture of muhisensory integration gripper system is first developed, which includes data acquisition layer, data processing layer and network interface layer. Then we propose a novel support-vector-machine-based data fusion algorithm and also design the gripper system by combining data fusion with CAN bus and CORBA technology, which provides the gripper system with outstanding characteristics such as modularization and intelligence. A multisensory integration gripper test bed is finally built on which a circuit board replacement job based on Internet-based teleoperation is achieved. The experimental results verify the validity of this gripper system design. 展开更多
关键词 teleoperation multisenso integration gripper data fusion support vector machine
在线阅读 下载PDF
A defect recognition model for cross-section profile of hot-rolled strip based on deep learning
17
作者 Tian-lun Li Wen-quan Sun +5 位作者 An-rui He Jian Shao Chao Liu Ai-bin Zhang Yi Qiang Xiang-hong Ma 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第12期2436-2447,共12页
The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and ... The cross-section profile is a key signal for evaluating hot-rolled strip quality,and ignoring its defects can easily lead to a final failure.The characteristics of complex curve,significant irregular fluctuation and imperfect sample data make it a challenge of recognizing cross-section defects,and current industrial judgment methods rely excessively on human decision making.A novel stacked denoising autoencoders(SDAE)model optimized with support vector machine(SVM)theory was proposed for the recognition of cross-section defects.Firstly,interpolation filtering and principal component analysis were employed to linearly reduce the data dimensionality of the profile curve.Secondly,the deep learning algorithm SDAE was used layer by layer for greedy unsupervised feature learning,and its final layer of back-propagation neural network was replaced by SVM for supervised learning of the final features,and the final model SDAE_SVM was obtained by further optimizing the entire network parameters via error back-propagation.Finally,the curve mirroring and combination stitching methods were used as data augmentation for the training set,which dealt with the problem of sample imbalance in the original data set,and the accuracy of cross-section defect prediction was further improved.The approach was applied in a 1780-mm hot rolling line of a steel mill to achieve the automatic diagnosis and classification of defects in cross-section profile of hot-rolled strip,which helps to reduce flatness quality concerns in downstream processes. 展开更多
关键词 Hot-rolled strip cross section:Curve recognition Deep learning-Stacked denoising autoencoder Support vector machine Imperfect data
原文传递
Laser-range-finder-based target detection for human-robot collaboration in hilly orchards
18
作者 Xiulan Bao Xiaojie Ma +3 位作者 Yuxin Niu Qilin Yin Hong Chen Qing Wu 《International Journal of Agricultural and Biological Engineering》 2025年第2期231-238,共8页
Human-robot collaboration is a promising means to promote orchard intelligence and reduce the over-reliance on manual work for complex agronomic practices such as fruit tree pruning,flower and fruit thinning,and harve... Human-robot collaboration is a promising means to promote orchard intelligence and reduce the over-reliance on manual work for complex agronomic practices such as fruit tree pruning,flower and fruit thinning,and harvesting.Accurate target detection and recognition of robots on humans are the basis and prerequisite for subsequent autonomous human-robot collaboration.In this study,detection and recognition of following robots for human torso were carried out in a standardized hilly orchard.A LiDAR-based human torso detection method was proposed based on the actual orchard environment.Breakpoint detection was used to cluster and segment the point clouds,and the segmentation thresholds were determined based on experimental results.The geometric attributes of the human torso were trained in the classification detection model,resulting in the extraction of six geometric attributes of the human torso.The classification model was then trained with various combinations to obtain the optimal feature combination[girth-depth-average curvature(G-D-k)]for human torso recognition in an orchard environment.Practical experiments were carried out to validate the feasibility and accuracy of the G-D-k feature combination.The experimental results demonstrate that the G-D-k feature combination can accurately recognize human bodies in orchards.The LiDAR-based detection method can achieve relatively accurate human detection and recognition in complex orchard environments,providing a reference for target detection in human-robot collaboration in orchards. 展开更多
关键词 human-robot collaboration following robot human torso recognition LiDAR support vector data descriptors
原文传递
Abnormal state detection of diesel engine with flexible monitoring thresholds
19
作者 Xinwei Wang Xiaolong Zhu +2 位作者 Guobin Pei Kunyu Cai Jiewei Lin 《Energy and AI》 2025年第3期869-885,共17页
In this paper,a condition monitoring method based on enhanced hierarchical fuzzy entropy and support vector data description(SVDD)is proposed to detect the abnormal state of diesel engine.Aiming at the lack of charact... In this paper,a condition monitoring method based on enhanced hierarchical fuzzy entropy and support vector data description(SVDD)is proposed to detect the abnormal state of diesel engine.Aiming at the lack of characterization of traditional statistical parameters,entropy algorithm is introduced to extract the fault mode information rich in vibration signal.Combined with the enhanced hierarchical analysis process,the enhanced hierarchical fuzzy entropy algorithm is proposed to enhance the extraction of high and low frequency fault related information in vibration signals.SVDD is used to construct anomaly detection model and set the threshold automatically.And the parrot optimization algorithm is used to optimize the parameters of the support vector data model to improve the adaptability and discrimination of the model.In order to verify the effectiveness of the proposed method,an experiment of a six-cylinder diesel engine under multiple working conditions was carried out to obtain the diesel cylinder head vibration data set under multiple conditions.Through feature analysis and discriminant analysis,the results show that compared with the existing entropy algorithm and intelligent search algorithm,the proposed method shows better representation and discriminant ability,and the average precision and recall rate under multiple loads are 99.32%and 92%,respectively. 展开更多
关键词 Diesel engine Condition monitoring Enhanced hierarchical fuzzy entropy Support vector data description
在线阅读 下载PDF
Big spatial vector data management: a review 被引量:4
20
作者 Xiaochuang Yao Guoqing Li 《Big Earth Data》 EI 2018年第1期108-129,共22页
Spatial vector data with high-precision and wide-coverage has exploded globally,such as land cover,social media,and other data-sets,which provides a good opportunity to enhance the national macroscopic decision-making... Spatial vector data with high-precision and wide-coverage has exploded globally,such as land cover,social media,and other data-sets,which provides a good opportunity to enhance the national macroscopic decision-making,social supervision,public services,and emergency capabilities.Simultaneously,it also brings great challenges in management technology for big spatial vector data(BSVD).In recent years,a large number of new concepts,parallel algorithms,processing tools,platforms,and applications have been proposed and developed to improve the value of BSVD from both academia and industry.To better understand BSVD and take advantage of its value effectively,this paper presents a review that surveys recent studies and research work in the data management field for BSVD.In this paper,we discuss and itemize this topic from three aspects according to different information technical levels of big spatial vector data management.It aims to help interested readers to learn about the latest research advances and choose the most suitable big data technologies and approaches depending on their system architectures.To support them more fully,firstly,we identify new concepts and ideas from numerous scholars about geographic information system to focus on BSVD scope in the big data era.Then,we conclude systematically not only the most recent published literatures but also a global view of main spatial technologies of BSVD,including data storage and organization,spatial index,processing methods,and spatial analysis.Finally,based on the above commentary and related work,several opportunities and challenges are listed as the future research interests and directions for reference. 展开更多
关键词 Big data vector data big spatial vector data(BSVD) big data management REVIEW
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部