"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course ..."Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.展开更多
A robust and efficient algorithm is presented to build multiresolution models (MRMs) of arbitrary meshes without requirement of subdivision connectivity. To overcome the sampling difficulty of arbitrary meshes, edge c...A robust and efficient algorithm is presented to build multiresolution models (MRMs) of arbitrary meshes without requirement of subdivision connectivity. To overcome the sampling difficulty of arbitrary meshes, edge contraction and vertex expansion are used as downsampling and upsampling methods. Our MRMs of a mesh are composed of a base mesh and a series of edge split operations, which are organized as a directed graph. Each split operation encodes two parts of information. One is the modification to the mesh, and the other is the dependency relation among splits. Such organization ensures the efficiency and robustness of our MRM algorithm. Examples demonstrate the functionality of our method.展开更多
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris...This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.展开更多
Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective ev...Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs~ since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work.展开更多
Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correc...Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure the frequency Taylor series method is used for designing a coning correction structure coefficient and then a new coning algorithm is obtained.Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments respectively.Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance compared to the traditional compressed coning algorithm.展开更多
PL/SQL is the most common language for ORACLE database application. It allows the developer to create stored program units (Procedures, Functions, and Packages) to improve software reusability and hide the complexity ...PL/SQL is the most common language for ORACLE database application. It allows the developer to create stored program units (Procedures, Functions, and Packages) to improve software reusability and hide the complexity of the execution of a specific operation behind a name. Also, it acts as an interface between SQL database and DEVELOPER. Therefore, it is important to test these modules that consist of procedures and functions. In this paper, a new genetic algorithm (GA), as search technique, is used in order to find the required test data according to branch criteria to test stored PL/SQL program units. The experimental results show that this was not fully achieved, such that the test target in some branches is not reached and the coverage percentage is 98%. A problem rises when target branch is depending on data retrieved from tables;in this case, GA is not able to generate test cases for this branch.展开更多
Tree logic, inherited from ambient logic, is introduced as the formal foundation of related programming language and type systems, In this paper, we introduce recursion into such logic system, which can describe the t...Tree logic, inherited from ambient logic, is introduced as the formal foundation of related programming language and type systems, In this paper, we introduce recursion into such logic system, which can describe the tree data more dearly and concisely. By making a distinction between proposition and predicate, a concise semantics interpretation for our modal logic is given. We also develop a model checking algorithm for the logic without △ operator. The correctness of the algorithm is shown. Such work can be seen as the basis of the semi-structured data processing language and more flexible type system.展开更多
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO...The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic i...Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.展开更多
基金supported by NSF B55101680,NTIF B2090571,B2110140,SCUT x2rjD2116860,Y1080170,Y1090160,Y1100030,Y1100050,Y1110020 and S1010561121,G101056137
文摘"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.
文摘A robust and efficient algorithm is presented to build multiresolution models (MRMs) of arbitrary meshes without requirement of subdivision connectivity. To overcome the sampling difficulty of arbitrary meshes, edge contraction and vertex expansion are used as downsampling and upsampling methods. Our MRMs of a mesh are composed of a base mesh and a series of edge split operations, which are organized as a directed graph. Each split operation encodes two parts of information. One is the modification to the mesh, and the other is the dependency relation among splits. Such organization ensures the efficiency and robustness of our MRM algorithm. Examples demonstrate the functionality of our method.
文摘This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments.
基金supported by the Research Center of College of Computer and Information Sciences,King Saud University,Saudi Arabia
文摘Data structures used for an algorithm can have a great impact on its performance, particularly for the solution of large and complex problems, such as multi-objective optimization problems (MOPs). Multi-objective evolutionary algorithms (MOEAs) are considered an attractive approach for solving MOPs~ since they are able to explore several parts of the Pareto front simultaneously. The data structures for storing and updating populations and non-dominated solutions (archives) may affect the efficiency of the search process. This article describes data structures used in MOEAs for realizing populations and archives in a comparative way, emphasizing their computational requirements and general applicability reported in the original work.
基金The National Natural Science Foundation of China(No.51375087)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110039)+2 种基金the Public Science and Technology Research Funds Projects of Ocean(No.201205035)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0097)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1349)
文摘Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure the frequency Taylor series method is used for designing a coning correction structure coefficient and then a new coning algorithm is obtained.Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments respectively.Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance compared to the traditional compressed coning algorithm.
文摘PL/SQL is the most common language for ORACLE database application. It allows the developer to create stored program units (Procedures, Functions, and Packages) to improve software reusability and hide the complexity of the execution of a specific operation behind a name. Also, it acts as an interface between SQL database and DEVELOPER. Therefore, it is important to test these modules that consist of procedures and functions. In this paper, a new genetic algorithm (GA), as search technique, is used in order to find the required test data according to branch criteria to test stored PL/SQL program units. The experimental results show that this was not fully achieved, such that the test target in some branches is not reached and the coverage percentage is 98%. A problem rises when target branch is depending on data retrieved from tables;in this case, GA is not able to generate test cases for this branch.
基金Supported by the National Natural Sciences Foun-dation of China (60233010 ,60273034 ,60403014) ,863 ProgramofChina (2002AA116010) ,973 Programof China (2002CB312002)
文摘Tree logic, inherited from ambient logic, is introduced as the formal foundation of related programming language and type systems, In this paper, we introduce recursion into such logic system, which can describe the tree data more dearly and concisely. By making a distinction between proposition and predicate, a concise semantics interpretation for our modal logic is given. We also develop a model checking algorithm for the logic without △ operator. The correctness of the algorithm is shown. Such work can be seen as the basis of the semi-structured data processing language and more flexible type system.
基金financial support extended for this academic work by the Beijing Natural Science Foundation(Grant 2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金This project was supported by National Natural Science Foundation (No. 69934020).
文摘Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.