Progress in cloud computing makes group data sharing in outsourced storage a reality.People join in group and share data with each other,making team work more convenient.This new application scenario also faces data s...Progress in cloud computing makes group data sharing in outsourced storage a reality.People join in group and share data with each other,making team work more convenient.This new application scenario also faces data security threats,even more complex.When a user quit its group,remaining data block signatures must be re-signed to ensure security.Some researchers noticed this problem and proposed a few works to relieve computing overhead on user side.However,considering the privacy and security need of group auditing,there still lacks a comprehensive solution to implement secure group user revocation,supporting identity privacy preserving and collusion attack resistance.Aiming at this target,we construct a concrete scheme based on ring signature and smart contracts.We introduce linkable ring signature to build a kind of novel meta data for integrity proof enabling anonymous verification.And the new meta data supports secure revocation.Meanwhile,smart contracts are using for resisting possible collusion attack and malicious re-signing computation.Under the combined effectiveness of both signature method and blockchain smart contracts,our proposal supports reliable user revocation and signature re-signing,without revealing any user identity in the whole process.Security and performance analysis compared with previous works prove that the proposed scheme is feasible and efficient.展开更多
Cloud storage has been widely used to team work or cooperation devel-opment.Data owners set up groups,generating and uploading their data to cloud storage,while other users in the groups download and make use of it,wh...Cloud storage has been widely used to team work or cooperation devel-opment.Data owners set up groups,generating and uploading their data to cloud storage,while other users in the groups download and make use of it,which is called group data sharing.As all kinds of cloud service,data group sharing also suffers from hardware/software failures and human errors.Provable Data Posses-sion(PDP)schemes are proposed to check the integrity of data stored in cloud without downloading.However,there are still some unmet needs lying in auditing group shared data.Researchers propose four issues necessary for a secure group shared data auditing:public verification,identity privacy,collusion attack resis-tance and traceability.However,none of the published work has succeeded in achieving all of these properties so far.In this paper,we propose a novel block-chain-based ring signature PDP scheme for group shared data,with an instance deployed on a cloud server.We design a linkable ring signature method called Linkable Homomorphic Authenticable Ring Signature(LHARS)to implement public anonymous auditing for group data.We also build smart contracts to resist collusion attack in group auditing.The security analysis and performance evalua-tion prove that our scheme is both secure and efficient.展开更多
For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method...For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.展开更多
Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound w...Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.展开更多
Wireless networks generate large amount of data. It is important to design energy efficient data search method since power of wireless nodes is finite. Expanding Ring Search (ERS) is a data search technique exploring ...Wireless networks generate large amount of data. It is important to design energy efficient data search method since power of wireless nodes is finite. Expanding Ring Search (ERS) is a data search technique exploring for targets progressively, which is widely used to locate destinations or information in wireless networks. The existing studies on improving the energy efficiency of ERS cannot work without positioning systems. In this paper, we combine the technique of random walk with ERS, and propose a random walk based expanding ring search method (RWERS) for large-scale wireless networks. RWERS can work without using positioning systems, and improve the energy efficiency of ERS by preventing each node from transmitting the same request more than once using the technique of random walk. We compare RWERS with the optimal ERS strategy and CERS in networks with various shapes of terrains. The simulation results show that RWERS decreases the energy cost by 50% without decreasing in success rate compared with ERS, and has twice the success rate of CERS when the network is sparse. RWERS can be applied to various shapes of terrains better compared with CERS.展开更多
基金The work is supported by the National Key Research and Development Program of China(No.2018YFC1604002)the National Natural Science Foundation of China(No.U1836204,No.U1936208,No.U1936216,No.62002197).
文摘Progress in cloud computing makes group data sharing in outsourced storage a reality.People join in group and share data with each other,making team work more convenient.This new application scenario also faces data security threats,even more complex.When a user quit its group,remaining data block signatures must be re-signed to ensure security.Some researchers noticed this problem and proposed a few works to relieve computing overhead on user side.However,considering the privacy and security need of group auditing,there still lacks a comprehensive solution to implement secure group user revocation,supporting identity privacy preserving and collusion attack resistance.Aiming at this target,we construct a concrete scheme based on ring signature and smart contracts.We introduce linkable ring signature to build a kind of novel meta data for integrity proof enabling anonymous verification.And the new meta data supports secure revocation.Meanwhile,smart contracts are using for resisting possible collusion attack and malicious re-signing computation.Under the combined effectiveness of both signature method and blockchain smart contracts,our proposal supports reliable user revocation and signature re-signing,without revealing any user identity in the whole process.Security and performance analysis compared with previous works prove that the proposed scheme is feasible and efficient.
基金supported by the National Key Research and Development Program of China(No.2018YFC1604002)the National Natural Science Foundation of China(No.U1836204,No.U1936208,No.U1936216,No.62002197).
文摘Cloud storage has been widely used to team work or cooperation devel-opment.Data owners set up groups,generating and uploading their data to cloud storage,while other users in the groups download and make use of it,which is called group data sharing.As all kinds of cloud service,data group sharing also suffers from hardware/software failures and human errors.Provable Data Posses-sion(PDP)schemes are proposed to check the integrity of data stored in cloud without downloading.However,there are still some unmet needs lying in auditing group shared data.Researchers propose four issues necessary for a secure group shared data auditing:public verification,identity privacy,collusion attack resis-tance and traceability.However,none of the published work has succeeded in achieving all of these properties so far.In this paper,we propose a novel block-chain-based ring signature PDP scheme for group shared data,with an instance deployed on a cloud server.We design a linkable ring signature method called Linkable Homomorphic Authenticable Ring Signature(LHARS)to implement public anonymous auditing for group data.We also build smart contracts to resist collusion attack in group auditing.The security analysis and performance evalua-tion prove that our scheme is both secure and efficient.
基金supported by the Preeminent Youth Fund of Sichuan Province,China(Grant No.2012JQ0012)the National Natural Science Foundation of China(Grant Nos.11173008,10974202,and 60978049)the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)
文摘For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.
文摘Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.
文摘Wireless networks generate large amount of data. It is important to design energy efficient data search method since power of wireless nodes is finite. Expanding Ring Search (ERS) is a data search technique exploring for targets progressively, which is widely used to locate destinations or information in wireless networks. The existing studies on improving the energy efficiency of ERS cannot work without positioning systems. In this paper, we combine the technique of random walk with ERS, and propose a random walk based expanding ring search method (RWERS) for large-scale wireless networks. RWERS can work without using positioning systems, and improve the energy efficiency of ERS by preventing each node from transmitting the same request more than once using the technique of random walk. We compare RWERS with the optimal ERS strategy and CERS in networks with various shapes of terrains. The simulation results show that RWERS decreases the energy cost by 50% without decreasing in success rate compared with ERS, and has twice the success rate of CERS when the network is sparse. RWERS can be applied to various shapes of terrains better compared with CERS.
基金The National Natural Science Foundation of China(No.61372103)the Natural Science Foundation of Jiangsu Province(No.BK20201265)Foundation of the National Engineering Research Center of Classified Protection and Safeguard Technology for Cybersecurity(No.C21640-2).