When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ...When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.展开更多
The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for coll...The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for collecting data is not sufficient because of their limited coverage and expensive costs for installation and maintenance. Application of the Global Positioning Systems (GPS) in travel time and delay data collections is proven to be efficient in terms of accuracy, level of details for the data and required data collection of man-power. While data collection automation is improved by the GPS technique, human errors can easily find their way through the post-processing phase, and therefore data post-processing remains a challenge especially in case of big projects with high amount of data. This paper introduces a stand-alone post-processing tool called GPS Calculator, which provides an easy-to-use environment to carry out data post-processing. This is a Visual Basic application that processes the data files obtained in the field and integrates them into Geographic Information Systems (GIS) for analysis and representation. The results show that this tool obtains similar results to the currently used data post-processing method, reduces the post-processing effort, and also eliminates the need for the second person during the data collection.展开更多
The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regressi...The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing.展开更多
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image proces...Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image processing method, named RNAM (resemble neighborhood averaging method), to facilitate visual data mining, which is used to post-process the data mining result-image and help users to discover significant features and useful patterns effectively. The experiments show that the method is intuitive, easily-understanding and effectiveness. It provides a new approach for visual data mining.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow bas...In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum...To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.展开更多
This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids...This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.展开更多
Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intole...Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.展开更多
In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produce...In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.展开更多
Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM t...Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data...In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data.展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
基金supported by the New Century Excellent Talents in University(NCET-09-0396)the National Science&Technology Key Projects of Numerical Control(2012ZX04014-031)+1 种基金the Natural Science Foundation of Hubei Province(2011CDB279)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)
文摘When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.
文摘The travel time data collection method is used to assist the congestion management. The use of traditional sensors (e.g. inductive loops, AVI sensors) or more recent Bluetooth sensors installed on major roads for collecting data is not sufficient because of their limited coverage and expensive costs for installation and maintenance. Application of the Global Positioning Systems (GPS) in travel time and delay data collections is proven to be efficient in terms of accuracy, level of details for the data and required data collection of man-power. While data collection automation is improved by the GPS technique, human errors can easily find their way through the post-processing phase, and therefore data post-processing remains a challenge especially in case of big projects with high amount of data. This paper introduces a stand-alone post-processing tool called GPS Calculator, which provides an easy-to-use environment to carry out data post-processing. This is a Visual Basic application that processes the data files obtained in the field and integrates them into Geographic Information Systems (GIS) for analysis and representation. The results show that this tool obtains similar results to the currently used data post-processing method, reduces the post-processing effort, and also eliminates the need for the second person during the data collection.
文摘The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing.
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
基金Supported by the National Natural Science Foun-dation of China (60173051) ,the Teaching and Research Award Pro-gramfor Outstanding Young Teachers in Higher Education Institu-tions of Ministry of Education of China ,and Liaoning Province HigherEducation Research Foundation (20040206)
文摘Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image processing method, named RNAM (resemble neighborhood averaging method), to facilitate visual data mining, which is used to post-process the data mining result-image and help users to discover significant features and useful patterns effectively. The experiments show that the method is intuitive, easily-understanding and effectiveness. It provides a new approach for visual data mining.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
文摘In the present computational fluid dynamics (CFD) community, post-processing is regarded as a procedure to view parameter distribution, detect characteristic structure and reveal physical mechanism of fluid flow based on computational or experimental results. Field plots by contours, iso-surfaces, streamlines, vectors and others are traditional post-processing techniques. While the shock wave, as one important and critical flow structure in many aerodynamic problems, can hardly be detected or distinguished in a direct way using these traditional methods, due to possible confusions with other similar discontinuous flow structures like slip line, contact discontinuity, etc. Therefore, method for automatic detection of shock wave in post-processing is of great importance for both academic research and engineering applications. In this paper, the current status of methodologies developed for shock wave detection and implementations in post-processing platform are reviewed, as well as discussions on advantages and limitations of the existing methods and proposals for further studies of shock wave detection method. We also develop an advanced post-processing software, with improved shock detection.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201701D221017,201901D211242)。
文摘To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.
文摘This paper proposed improvements to the low bit rate parametric audio coder with sinusoid model as its kernel. Firstly, we propose a new method to effectively order and select the perceptually most important sinusoids. The sinusoid which contributes most to the reduction of overall NMR is chosen. Combined with our improved parametric psychoacoustic model and advanced peak riddling techniques, the number of sinusoids required can be greatly reduced and the coding efficiency can be greatly enhanced. A lightweight version is also given to reduce the amount of computation with only little sacrifice of performance. Secondly, we propose two enhancement techniques for sinusoid synthesis: bandwidth enhancement and line enhancement. With little overhead, the effective bandwidth can be extended one more octave; the timbre tends to sound much brighter, thicker and more beautiful.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.
文摘In the analysis of high-rise building, traditional displacement-based plane elements are often used to get the in-plane internal forces of the shear walls by stress integration. Limited by the singular problem produced by wall holes and the loss of precision induced by using differential method to derive strains, the displacement-based elements cannot always present accuracy enough for design. In this paper, the hybrid post-processing procedure based on the Hellinger-Reissner variational principle is used for improving the stress precision of two quadrilateral plane elements. In order to find the best stress field, three different forms are assumed for the displacement-based plane elements and with drilling DOF. Numerical results show that by using the proposed method, the accuracy of stress solutions of these two displacement-based plane elements can be improved.
基金financially supported by the 2022 MTC Young Individual Research Grants under Singapore Research,Innovation and Enterprise(RIE)2025 Plan(No.M22K3c0097)the Natural Science Foundation of US(No.DMR-2104933)the sponsorship of the China Scholarship Council(No.202106130051)。
文摘Laser additive manufacturing(LAM)of titanium(Ti)alloys has emerged as a transformative technology with vast potential across multiple industries.To recap the state of the art,Ti alloys processed by two essential LAM techniques(i.e.,laser powder bed fusion and laser-directed energy deposition)will be reviewed,covering the aspects of processes,materials and post-processing.The impacts of process parameters and strategies for optimizing parameters will be elucidated.Various types of Ti alloys processed by LAM,includingα-Ti,(α+β)-Ti,andβ-Ti alloys,will be overviewed in terms of micro structures and benchmarking properties.Furthermore,the post-processing methods for improving the performance of L AM-processed Ti alloys,including conventional and novel heat treatment,hot isostatic pressing,and surface processing(e.g.,ultrasonic and laser shot peening),will be systematically reviewed and discussed.The review summarizes the process windows,properties,and performance envelopes and benchmarks the research achievements in LAM of Ti alloys.The outlooks of further trends in LAM of Ti alloys are also highlighted at the end of the review.This comprehensive review could serve as a valuable resource for researchers and practitioners,promoting further advancements in LAM-built Ti alloys and their applications.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
文摘In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data.
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.