In the present study,data mining and network pharmacology were utilized to explore the principles and mechanisms of traditional Chinese medicine(TCM)in treating acute appendicitis.The goal was to provide a scientific ...In the present study,data mining and network pharmacology were utilized to explore the principles and mechanisms of traditional Chinese medicine(TCM)in treating acute appendicitis.The goal was to provide a scientific basis for clinical treatment and further research on this disease.First,we searched the National Patent Database for Chinese herbal compound prescriptions used to treat acute appendicitis.We then applied frequency analysis,character and taste meridian analysis,association rule analysis,and hierarchical cluster analysis to identify the patterns of TCM treatment for acute appendicitis,selecting key combinations of Chinese medicines.Next,we screened the main active components of these key TCM based on quality markers.Using databases such as SwissTargetPrediction,SymMap,ETCM,and STRING,we analyzed the pharmacological mechanisms of these key TCM in treating acute appendicitis.Key active components and targets were further verified through molecular docking.We identified a total of 129 patents involving 316 Chinese medicines,with 24 being frequently used.The results indicated that most Chinese herbs used for acute appendicitis were heat-clearing drugs,blood-activating and stasis-removing drugs,and purging drugs.The primary active ingredients of the Rhubarb-cortex moutan-flos lonicerae combination for treating acute appendicitis included Emodin,Paeonol,Physcion,Chlorogenic acid,Chrysophanol,Rhein acid,and Aloe-emodin.These ingredients targeted key proteins such as ALB,TP53,BCL2,STAT3,IL-6,and TNF,and were involved in cellular responses to lipopolysaccharides,cell composition,and various cytokine-mediated biological processes.They also interacted with signaling pathways like AGE-RAGE,TNF,IL-17,and FoxO.Based on patent data,this study analyzed medication patterns in the treatment of acute appendicitis,discussed the possible mechanisms of key TCM combinations,and provided a scientific basis and new perspectives for the diagnosis and treatment of the disease.展开更多
Introduction Neurosurgical emergencies such as spontaneous intracerebral hemorrhage(ICH),traumatic brain injury(TBI),and acute brain herniation are among the most time-sensitive and high-stakes conditions in modern me...Introduction Neurosurgical emergencies such as spontaneous intracerebral hemorrhage(ICH),traumatic brain injury(TBI),and acute brain herniation are among the most time-sensitive and high-stakes conditions in modern medicine.Clinical decisions often must be made within minutes,yet these decisions are traditionally guided by limited information,heuristic reasoning,and past experience.In this context,the rise of medical data mining and real-time analytics offers a transformative opportunity:to extract actionable intelligence from the flood of clinical,imaging,and physiological data already being collected,and to use this intelligence to guide care in real time[1–3](Figure 1).展开更多
With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the c...With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the campus.They have been applied to teaching,scientific research,student management,and other fields,improving the quality and efficiency of management.This paper mainly studies the intelligent educational administration management system based on data mining technology.Firstly,this paper introduces the application process of data mining technology,and builds an intelligent educational administration management system based on data mining technology.Then,this paper optimizes the application of the Apriori algorithm in educational administration management through transaction compression and frequent sampling.Compared with the traditional Apriori algorithm,the optimized Apriori algorithm in this paper has a shorter execution time under the same minimum support.展开更多
Objective To explore the optimization and principles of acupoint selection and coordination in the treatment of adult abdominal obesity using acupuncture and moxibustion over the past decade using data mining.Methods ...Objective To explore the optimization and principles of acupoint selection and coordination in the treatment of adult abdominal obesity using acupuncture and moxibustion over the past decade using data mining.Methods Clinical studies of abdominal obesity treated with acupuncture and moxibustion,collected in the past 10 years,were searched from China Biology Medicine disc(CBMdisc),China National knowledge infrastructure(CNKI),Wanfang,China Science and Technology Journal Database(VIP),Pubmed,Embase,Google Scholar,Web of Science,(The Cumulative Index to Nursing and Allied Health Literature)CINAHL,Psyclnfo and Scopus,dated from March 1,2013 to March 31,2023.Using IBM SPSS Modeler 18.0 and other software,the frequency analysis,association-rules analysis and cluster analysis were conducted on interventions,traditional Chinese medicine(TCM)patterns,use frequency of acupoint,meridian attribution of acupoint,acupoint location,etc.Results A total of 55 articles were included,with 102 prescriptions and 71 acupoints involved.The top 3 interventions were acupoint embedding method,simple electroacupuncture and simple filiform needling.Seventeen patterns/syndromes of TCM differentiation were collected,dominated by spleen deficiency and damp blockage,spleen and kidney yang deficiency and heat accumulation in stomach and intestines.The acupoints in clinical practice were mostly at the foot-yangming stomach meridian,the conception vessel and the foot-taiyin spleen meridian,and located at the abdominal region.The top 5 acupoints of high frequency were Tianshu(ST25),Zhongwan(CV12),Daheng(SP15),Zusanli(ST36),Huaroumen(ST24)and Daimai(GB26).The specific points of the high frequency were the crossing points and front-mu points,of which,ST25 and CV12 were the most prominent.After association-rules analysis on the high-frequency acupoints,20 groups of associated acupoints were obtained,in which,the core acupoints included ST25,CV12,SP15 and ST36.Conclusion In recent 10 years,abdominal obesity is treated by the acupoints of foot-yangming stomach meridian,the conception vessel and the foot-taiyin spleen meridian.Compared with the regimen for simple obesity,the acupoints at the abdominal region are specially selected in treatment of abdominal obesity,such as ST25,CV12,SP15 and ST36.Supplementary acupoints are selected based on syndrome differentiation to simultaneously address both the disease manifestations and root causes.展开更多
Objective:To explore the core acupuncture acupoints and pattern-adapted acupoint combination rules for autism spectrum disorder(ASD)complicated with sleep disorder using clinical data mining technology.Methods:A retro...Objective:To explore the core acupuncture acupoints and pattern-adapted acupoint combination rules for autism spectrum disorder(ASD)complicated with sleep disorder using clinical data mining technology.Methods:A retrospective analysis was conducted on the diagnosis and treatment data of 104 children with ASD complicated with sleep disorder admitted to Xi’an Traditional Chinese Medicine(TCM)Encephalopathy Hospital from January 2022 to December 2024.Cross-pattern main acupoints were screened via frequency statistics,chi-square test,and factor analysis;pattern-specific auxiliary acupoints were extracted by combining multiple correspondence analysis,cluster analysis,and association rule mining.Results:Ten cross-pattern main acupoints(Baihui,Sishenzhen,Language Area 1,Language Area 2,Neiguan,Shenmen,Yongquan,Xuanzhong)were identified,and acupoint combination schemes for four major TCM patterns(Hyperactivity of Liver and Heart Fire,Deficiency of Kidney Essence,Deficiency of Both Heart and Spleen,Hyperactivity of Liver with Spleen Deficiency)were established.Conclusion:Acupuncture treatment should follow the principle of“regulating spirit and calming the brain as the root,and dredging collaterals based on pattern differentiation as the branch”.The synergy between main and auxiliary acupoints can accurately regulate the disease,providing a basis for precise clinical treatment.展开更多
Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental chall...Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.展开更多
A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safe...A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safety hazards.However,identifying modal parameters for structural health monitoring remains a major challenge due to its large deformations and flexibility.Vibration signal-based methods are essential for detecting damage and enabling timely maintenance to minimize losses.However,accurately extracting features from one-dimensional(1D)signals is often hindered by various environmental factors and measurement noises.To address this challenge,a novel approach based on a residual convolutional auto-encoder(RCAE)is proposed for detecting damage in deep-sea mining risers,incorporating a data fusion strategy.First,principal component analysis(PCA)is applied to reduce environmental fluctuations and fuse multisensor strain readings.Subsequently,a 1D-RCAE is used to extract damage-sensitive features(DSFs)from the fused dataset.A Mahalanobis distance indicator is established to compare the DSFs of the testing and healthy risers.The specific threshold for these distances is determined using the 3σcriterion,which is employed to assess whether damage has occurred in the testing riser.The effectiveness and robustness of the proposed approach are verified through numerical simulations of a 500-m riser and experimental tests on a 6-m riser.Moreover,the impact of contaminated noise and environmental fluctuations is examined.Results show that the proposed PCA-1D-RCAE approach can effectively detect damage and is resilient to measurement noise and environmental fluctuations.The accuracy exceeds 98%under noise-free conditions and remains above 90%even with 10 dB noise.This novel approach has the potential to establish a new standard for evaluating the health and integrity of risers during mining operations,thereby reducing the high costs and risks associated with failures.Maintenance activities can be scheduled more efficiently by enabling early and accurate detection of riser damage,minimizing downtime and avoiding catastrophic failures.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF...Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF inputs and outputs,neglecting the associations between smelting operations and RMC.Traditional methods of reducing RMC rely on manual experience and lack a standard operation guidance.A method based on association rules mining and metallurgical mechanism(ARM-MM)was proposed.ARM-MM proposed an improved evaluation indicator of RMC and the indicator independently showed the associations between smelting operations and RMC.On the basis,1265 heats of real EAF data were used to obtain the operation guidance for RMC reduction.According to the ratio of hot metal(HM)in charge metals,data were divided into all dataset,low HM ratio dataset,medium HM ratio dataset,and high HM ratio dataset.ARM algorithm was used in each dataset to obtain specific operation guidance.The real average RMC under all dataset,medium HM ratio dataset,and high HM ratio dataset was reduced by 279,486,and 252 kg/heat,respectively,when obtained operation guidance was applied.展开更多
Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play...Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
Different acupuncture-moxibustion therapies can produce different clinical effects, that is, the effect has specificity, which is significantly important in obtaining acupuncture-moxibustion efficacy. In this study, t...Different acupuncture-moxibustion therapies can produce different clinical effects, that is, the effect has specificity, which is significantly important in obtaining acupuncture-moxibustion efficacy. In this study, the clinical application laws of fire needle, acupoint injection, catgut embedment, acupoint application, moxibustion therapy and filiform needle acupuncture were summarized in the aspects of category of disease, efficacy and related prescriptions (such as medication and acupoint selection) based on the result of data mining, and the general applicable categories of disease of acupuncture-moxibustion treatment methods were further screened, so as to guide the clinical application and give play to the best efficacy.展开更多
This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-...This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness.展开更多
An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a...An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.展开更多
In order to improve the accuracy and integrality of mining data records from the web, the concepts of isomorphic page and directory page and three algorithms are proposed. An isomorphic web page is a set of web pages ...In order to improve the accuracy and integrality of mining data records from the web, the concepts of isomorphic page and directory page and three algorithms are proposed. An isomorphic web page is a set of web pages that have uniform structure, only differing in main information. A web page which contains many links that link to isomorphic web pages is called a directory page. Algorithm 1 can find directory web pages in a web using adjacent links similar analysis method. It first sorts the link, and then counts the links in each directory. If the count is greater than a given valve then finds the similar sub-page links in the directory and gives the results. A function for an isomorphic web page judgment is also proposed. Algorithm 2 can mine data records from an isomorphic page using a noise information filter. It is based on the fact that the noise information is the same in two isomorphic pages, only the main information is different. Algorithm 3 can mine data records from an entire website using the technology of spider. The experiment shows that the proposed algorithms can mine data records more intactly than the existing algorithms. Mining data records from isomorphic pages is an efficient method.展开更多
A new method was worked out to improve the precision of springback prediction in sheet metal forming by combining the finite element method (FEM) with the data mining (DM) technique. First the genetic algorithm (GA) w...A new method was worked out to improve the precision of springback prediction in sheet metal forming by combining the finite element method (FEM) with the data mining (DM) technique. First the genetic algorithm (GA) was adopted for recognizing the material parameters. Then according to the even design idea, the suitable calculation scheme was confirmed, and FEM was used for calculating the springback. The computation results were compared with experiment data, the difference between them was taken as source data, and a new pattern recognition method of DM called hierarchical optimal map recognition method (HOMR) is applied for summarizing the calculation regulation in FEM. At the end, the mathematics model of the springback simulation was established. Based on the model, the calculation errors of springback can be controlled within 10% compared with the experimental results.展开更多
基金Henan Province Special Research Project of Tra ditional Chinese Medicine(Grant No.2022ZY1090).
文摘In the present study,data mining and network pharmacology were utilized to explore the principles and mechanisms of traditional Chinese medicine(TCM)in treating acute appendicitis.The goal was to provide a scientific basis for clinical treatment and further research on this disease.First,we searched the National Patent Database for Chinese herbal compound prescriptions used to treat acute appendicitis.We then applied frequency analysis,character and taste meridian analysis,association rule analysis,and hierarchical cluster analysis to identify the patterns of TCM treatment for acute appendicitis,selecting key combinations of Chinese medicines.Next,we screened the main active components of these key TCM based on quality markers.Using databases such as SwissTargetPrediction,SymMap,ETCM,and STRING,we analyzed the pharmacological mechanisms of these key TCM in treating acute appendicitis.Key active components and targets were further verified through molecular docking.We identified a total of 129 patents involving 316 Chinese medicines,with 24 being frequently used.The results indicated that most Chinese herbs used for acute appendicitis were heat-clearing drugs,blood-activating and stasis-removing drugs,and purging drugs.The primary active ingredients of the Rhubarb-cortex moutan-flos lonicerae combination for treating acute appendicitis included Emodin,Paeonol,Physcion,Chlorogenic acid,Chrysophanol,Rhein acid,and Aloe-emodin.These ingredients targeted key proteins such as ALB,TP53,BCL2,STAT3,IL-6,and TNF,and were involved in cellular responses to lipopolysaccharides,cell composition,and various cytokine-mediated biological processes.They also interacted with signaling pathways like AGE-RAGE,TNF,IL-17,and FoxO.Based on patent data,this study analyzed medication patterns in the treatment of acute appendicitis,discussed the possible mechanisms of key TCM combinations,and provided a scientific basis and new perspectives for the diagnosis and treatment of the disease.
文摘Introduction Neurosurgical emergencies such as spontaneous intracerebral hemorrhage(ICH),traumatic brain injury(TBI),and acute brain herniation are among the most time-sensitive and high-stakes conditions in modern medicine.Clinical decisions often must be made within minutes,yet these decisions are traditionally guided by limited information,heuristic reasoning,and past experience.In this context,the rise of medical data mining and real-time analytics offers a transformative opportunity:to extract actionable intelligence from the flood of clinical,imaging,and physiological data already being collected,and to use this intelligence to guide care in real time[1–3](Figure 1).
文摘With the gradual acceleration of information construction in colleges and universities,digital campus and smart campus have gradually become important means for colleges and universities to scientifically manage the campus.They have been applied to teaching,scientific research,student management,and other fields,improving the quality and efficiency of management.This paper mainly studies the intelligent educational administration management system based on data mining technology.Firstly,this paper introduces the application process of data mining technology,and builds an intelligent educational administration management system based on data mining technology.Then,this paper optimizes the application of the Apriori algorithm in educational administration management through transaction compression and frequent sampling.Compared with the traditional Apriori algorithm,the optimized Apriori algorithm in this paper has a shorter execution time under the same minimum support.
基金Supported by Shanghai College Students Innovation and Entrepreneurship Training Program Project:202310268066The 16th Batch of Science And Technology Innovation Projects of Shanghai University of Traditional Chinese Medicine:SHUTCM2023010+1 种基金2024 Shanghai Oriental Talent Program Youth Project2021 High-level Local University Innovation Team Project of Shanghai University of Traditional Chinese Medicine:No.3 Shanghai Education Commission Personnel [2022]。
文摘Objective To explore the optimization and principles of acupoint selection and coordination in the treatment of adult abdominal obesity using acupuncture and moxibustion over the past decade using data mining.Methods Clinical studies of abdominal obesity treated with acupuncture and moxibustion,collected in the past 10 years,were searched from China Biology Medicine disc(CBMdisc),China National knowledge infrastructure(CNKI),Wanfang,China Science and Technology Journal Database(VIP),Pubmed,Embase,Google Scholar,Web of Science,(The Cumulative Index to Nursing and Allied Health Literature)CINAHL,Psyclnfo and Scopus,dated from March 1,2013 to March 31,2023.Using IBM SPSS Modeler 18.0 and other software,the frequency analysis,association-rules analysis and cluster analysis were conducted on interventions,traditional Chinese medicine(TCM)patterns,use frequency of acupoint,meridian attribution of acupoint,acupoint location,etc.Results A total of 55 articles were included,with 102 prescriptions and 71 acupoints involved.The top 3 interventions were acupoint embedding method,simple electroacupuncture and simple filiform needling.Seventeen patterns/syndromes of TCM differentiation were collected,dominated by spleen deficiency and damp blockage,spleen and kidney yang deficiency and heat accumulation in stomach and intestines.The acupoints in clinical practice were mostly at the foot-yangming stomach meridian,the conception vessel and the foot-taiyin spleen meridian,and located at the abdominal region.The top 5 acupoints of high frequency were Tianshu(ST25),Zhongwan(CV12),Daheng(SP15),Zusanli(ST36),Huaroumen(ST24)and Daimai(GB26).The specific points of the high frequency were the crossing points and front-mu points,of which,ST25 and CV12 were the most prominent.After association-rules analysis on the high-frequency acupoints,20 groups of associated acupoints were obtained,in which,the core acupoints included ST25,CV12,SP15 and ST36.Conclusion In recent 10 years,abdominal obesity is treated by the acupoints of foot-yangming stomach meridian,the conception vessel and the foot-taiyin spleen meridian.Compared with the regimen for simple obesity,the acupoints at the abdominal region are specially selected in treatment of abdominal obesity,such as ST25,CV12,SP15 and ST36.Supplementary acupoints are selected based on syndrome differentiation to simultaneously address both the disease manifestations and root causes.
基金Song Hujie’s Inheritance Studio of National Renowned Traditional Chinese Medicine Experts.
文摘Objective:To explore the core acupuncture acupoints and pattern-adapted acupoint combination rules for autism spectrum disorder(ASD)complicated with sleep disorder using clinical data mining technology.Methods:A retrospective analysis was conducted on the diagnosis and treatment data of 104 children with ASD complicated with sleep disorder admitted to Xi’an Traditional Chinese Medicine(TCM)Encephalopathy Hospital from January 2022 to December 2024.Cross-pattern main acupoints were screened via frequency statistics,chi-square test,and factor analysis;pattern-specific auxiliary acupoints were extracted by combining multiple correspondence analysis,cluster analysis,and association rule mining.Results:Ten cross-pattern main acupoints(Baihui,Sishenzhen,Language Area 1,Language Area 2,Neiguan,Shenmen,Yongquan,Xuanzhong)were identified,and acupoint combination schemes for four major TCM patterns(Hyperactivity of Liver and Heart Fire,Deficiency of Kidney Essence,Deficiency of Both Heart and Spleen,Hyperactivity of Liver with Spleen Deficiency)were established.Conclusion:Acupuncture treatment should follow the principle of“regulating spirit and calming the brain as the root,and dredging collaterals based on pattern differentiation as the branch”.The synergy between main and auxiliary acupoints can accurately regulate the disease,providing a basis for precise clinical treatment.
文摘Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.
基金the National Key Research and Development Program of China(No.2023 YFC2811600)the National Natural Science Foundation of China(Nos.52301349,52088102)+1 种基金the Major Science and Technology Innovation Program of Qingdao(No.223-3-hygg-10-hy)the Qingdao Science Foundation for Post-doctoral Scientists(Nos.QDBSH20220202070,QDBSH20220201015)。
文摘A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safety hazards.However,identifying modal parameters for structural health monitoring remains a major challenge due to its large deformations and flexibility.Vibration signal-based methods are essential for detecting damage and enabling timely maintenance to minimize losses.However,accurately extracting features from one-dimensional(1D)signals is often hindered by various environmental factors and measurement noises.To address this challenge,a novel approach based on a residual convolutional auto-encoder(RCAE)is proposed for detecting damage in deep-sea mining risers,incorporating a data fusion strategy.First,principal component analysis(PCA)is applied to reduce environmental fluctuations and fuse multisensor strain readings.Subsequently,a 1D-RCAE is used to extract damage-sensitive features(DSFs)from the fused dataset.A Mahalanobis distance indicator is established to compare the DSFs of the testing and healthy risers.The specific threshold for these distances is determined using the 3σcriterion,which is employed to assess whether damage has occurred in the testing riser.The effectiveness and robustness of the proposed approach are verified through numerical simulations of a 500-m riser and experimental tests on a 6-m riser.Moreover,the impact of contaminated noise and environmental fluctuations is examined.Results show that the proposed PCA-1D-RCAE approach can effectively detect damage and is resilient to measurement noise and environmental fluctuations.The accuracy exceeds 98%under noise-free conditions and remains above 90%even with 10 dB noise.This novel approach has the potential to establish a new standard for evaluating the health and integrity of risers during mining operations,thereby reducing the high costs and risks associated with failures.Maintenance activities can be scheduled more efficiently by enabling early and accurate detection of riser damage,minimizing downtime and avoiding catastrophic failures.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金supported by National Natural Science Foundation of China(Nos.52174328 and 52474368)Fundamental Research Funds for Central Universities of Central South University(Nos.2022ZZTS0084 and 2024ZZTS0062).
文摘Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF inputs and outputs,neglecting the associations between smelting operations and RMC.Traditional methods of reducing RMC rely on manual experience and lack a standard operation guidance.A method based on association rules mining and metallurgical mechanism(ARM-MM)was proposed.ARM-MM proposed an improved evaluation indicator of RMC and the indicator independently showed the associations between smelting operations and RMC.On the basis,1265 heats of real EAF data were used to obtain the operation guidance for RMC reduction.According to the ratio of hot metal(HM)in charge metals,data were divided into all dataset,low HM ratio dataset,medium HM ratio dataset,and high HM ratio dataset.ARM algorithm was used in each dataset to obtain specific operation guidance.The real average RMC under all dataset,medium HM ratio dataset,and high HM ratio dataset was reduced by 279,486,and 252 kg/heat,respectively,when obtained operation guidance was applied.
基金sponsored by the National Science and Technology Major Project(No.2011ZX05023-005-006)
文摘Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
基金National Natural Science Foundation of China:81072883,81173342,81473773Scientific Research Project of Hebei Education Department:Z 2014145Planned Project of Young Talents in Colleges and Universities in Hebei Province:BJ 2014047
文摘Different acupuncture-moxibustion therapies can produce different clinical effects, that is, the effect has specificity, which is significantly important in obtaining acupuncture-moxibustion efficacy. In this study, the clinical application laws of fire needle, acupoint injection, catgut embedment, acupoint application, moxibustion therapy and filiform needle acupuncture were summarized in the aspects of category of disease, efficacy and related prescriptions (such as medication and acupoint selection) based on the result of data mining, and the general applicable categories of disease of acupuncture-moxibustion treatment methods were further screened, so as to guide the clinical application and give play to the best efficacy.
文摘This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness.
文摘An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.
文摘In order to improve the accuracy and integrality of mining data records from the web, the concepts of isomorphic page and directory page and three algorithms are proposed. An isomorphic web page is a set of web pages that have uniform structure, only differing in main information. A web page which contains many links that link to isomorphic web pages is called a directory page. Algorithm 1 can find directory web pages in a web using adjacent links similar analysis method. It first sorts the link, and then counts the links in each directory. If the count is greater than a given valve then finds the similar sub-page links in the directory and gives the results. A function for an isomorphic web page judgment is also proposed. Algorithm 2 can mine data records from an isomorphic page using a noise information filter. It is based on the fact that the noise information is the same in two isomorphic pages, only the main information is different. Algorithm 3 can mine data records from an entire website using the technology of spider. The experiment shows that the proposed algorithms can mine data records more intactly than the existing algorithms. Mining data records from isomorphic pages is an efficient method.
文摘A new method was worked out to improve the precision of springback prediction in sheet metal forming by combining the finite element method (FEM) with the data mining (DM) technique. First the genetic algorithm (GA) was adopted for recognizing the material parameters. Then according to the even design idea, the suitable calculation scheme was confirmed, and FEM was used for calculating the springback. The computation results were compared with experiment data, the difference between them was taken as source data, and a new pattern recognition method of DM called hierarchical optimal map recognition method (HOMR) is applied for summarizing the calculation regulation in FEM. At the end, the mathematics model of the springback simulation was established. Based on the model, the calculation errors of springback can be controlled within 10% compared with the experimental results.