Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the ...Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.展开更多
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper...As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].展开更多
With the rise of data-intensive research,data literacy has become a critical capability for improving scientific data quality and achieving artificial intelligence(AI)readiness.In the biomedical domain,data are charac...With the rise of data-intensive research,data literacy has become a critical capability for improving scientific data quality and achieving artificial intelligence(AI)readiness.In the biomedical domain,data are characterized by high complexity and privacy sensitivity,calling for robust and systematic data management skills.This paper reviews current trends in scientific data governance and the evolving policy landscape,highlighting persistent challenges such as inconsistent standards,semantic misalignment,and limited awareness of compliance.These issues are largely rooted in the lack of structured training and practical support for researchers.In response,this study builds on existing data literacy frameworks and integrates the specific demands of biomedical research to propose a comprehensive,lifecycle-oriented data literacy competency model with an emphasis on ethics and regulatory awareness.Furthermore,it outlines a tiered training strategy tailored to different research stages—undergraduate,graduate,and professional,offering theoretical foundations and practical pathways for universities and research institutions to advance data literacy education.展开更多
We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting I...We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.展开更多
National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chines...National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chinese Academy of Medical Sciences under the oversight of the National Health Commission,NPHDC adheres to national regulations including the Scientific Data Management Measures and the National Science and Technology Infrastructure Service Platform Management Measures,and is committed to collecting,integrating,managing,and sharing biomedical and health data through openaccess platform,fostering open sharing and engaging in international cooperation.展开更多
In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and ...In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness.展开更多
The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing ...The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing a high efficient and low cost network multi-well data management architecture based on the General Logging Curve Theory and the Cif data format; 2, implementing efficient visit and transmission of multi-well data in C/S local network based on TCP/IP protocol; 3,ensuring the safety of multi-well data in store, visit and application based on Unix operating system security. By using CifNet system, the researcher in office or at home can visit curves of any borehole in any working area of any oilfield. The application foreground of CifNet system is also commented.展开更多
The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model...The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model of this PDM system. The integration key technology of PDM and CAD systems are discussed, the isomerous interface characteristics between CAD and PDM systems are analyzed, and finally, the integration mode of the PDM and CAD systems is given. Using these technologies, the integration of PDM and CAD systems is realized and the consistence of data in PDM and CAD systems is kept. Finally, the Product Data Management system is developed, which has been tested on development process of the hydraulic generator. The running process is stable and safety.展开更多
Artificial intelligence(AI)relies on data and algorithms.State-of-the-art(SOTA)AI smart algorithms have been developed to improve the performance of AI-oriented structures.However,model-centric approaches are limited ...Artificial intelligence(AI)relies on data and algorithms.State-of-the-art(SOTA)AI smart algorithms have been developed to improve the performance of AI-oriented structures.However,model-centric approaches are limited by the absence of high-quality data.Data-centric AI is an emerging approach for solving machine learning(ML)problems.It is a collection of various data manipulation techniques that allow ML practitioners to systematically improve the quality of the data used in an ML pipeline.However,data-centric AI approaches are not well documented.Researchers have conducted various experiments without a clear set of guidelines.This survey highlights six major data-centric AI aspects that researchers are already using to intentionally or unintentionally improve the quality of AI systems.These include big data quality assessment,data preprocessing,transfer learning,semi-supervised learning,machine learning operations(MLOps),and the effect of adding more data.In addition,it highlights recent data-centric techniques adopted by ML practitioners.We addressed how adding data might harm datasets and how HoloClean can be used to restore and clean them.Finally,we discuss the causes of technical debt in AI.Technical debt builds up when software design and implementation decisions run into“or outright collide with”business goals and timelines.This survey lays the groundwork for future data-centric AI discussions by summarizing various data-centric approaches.展开更多
A new web product data management architecture is presented. The three-tier web architecture and Simple Object Access Protocol (SOAP) are combined to build the web-based product data management (PDM) system which incl...A new web product data management architecture is presented. The three-tier web architecture and Simple Object Access Protocol (SOAP) are combined to build the web-based product data management (PDM) system which includes three tiers: the user services tier, the business services tier, and the data services tier. The client service component uses the server-side technology, and Extensible Markup Language (XML) web service which uses SOAP as the communication protocol is chosen as the business service component. To illustrate how to build a web-based PDM system using the proposed architecture, a case PDM system which included three logical tires was built. To use the security and central management features of the database, a stored procedure was recommended in the data services tier. The business object was implemented as an XML web service so that client could use standard internet protocols to communicate with the business object from any platform. In order to satisfy users using all sorts of browser, the server-side technology and Microsoft ASP.NET was used to create the dynamic user interface.展开更多
PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterpri...PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.展开更多
Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s in...Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.展开更多
In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving thro...In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving through the study on FOXBASE computer language. This paper elabo-rates the overall conception of this system , indicates the main task which should he completed in this system and introduces its module structure and main functions.展开更多
Before the implementation of product data management (PDM) system, person model and enterprise process model (EPM) must be firstly established. For the convenience of project management, all the related users must be ...Before the implementation of product data management (PDM) system, person model and enterprise process model (EPM) must be firstly established. For the convenience of project management, all the related users must be allocated to the “Person User Role Group” net. Based on the person model and the direction of information flow, the EPM is established subsequently. The EPM consists of several release levels, in which the access controls are defined. The EPM procedure shows the blueprint of the workflow process structure. The establishment of person model and EPM in an enterprise has been instanced at the end of this paper.展开更多
Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected veh...Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected vehicle) technologies represent a new approach to capturing and using needed transportation data in real time or near real time. In the case of Michigan, several ITS programs have been launched successfully, but independently of each other. The objective of this research is to evaluate and assess all important factors that will influence the collection, management and use of ITS data, and recommend strategies to develop integrated, dynamic and adaptive data management systems for state transportation agencies.展开更多
The brokering approach can be successfully used to overcome the crucial question of searching among enormous amount of data (raw and/or processed) produced and stored in different information systems. In this paper,...The brokering approach can be successfully used to overcome the crucial question of searching among enormous amount of data (raw and/or processed) produced and stored in different information systems. In this paper, authors describe the Data Management System the DMS (Data Management System) developed by INGV (Istituto Nazionale di Geofisica e Vulcanologia) to support the brokering system GEOSS (Global Earth Observation System of Systems) adopted for the ARCA (Arctic Present Climate Change and Past Extreme Events) project. This DMS includes heterogeneous data that contributes to the ARCA objective (www.arcaproject.it) focusing on multi-parametric and multi-disciplinary studies on the mechanism (s) behind the release of large volumes of cold and fresh water from melting of ice caps. The DMS is accessible directly at the www.arca.rm.ingv.it, or through the IADC (Italian Arctic Data Center) at http://arcticnode.dta.cnr.it/iadc/gi-portal/index.jsp that interoperates with the GEOSS brokering system (http://www.geoportal.org0 making easy and fast the search of specific data set and its URL.展开更多
Automated performance tuning of data management systems offer various benefits such as improved performance, declined administration costs, and reduced workloads to database administrators (DBAs). Currently, DBAs tune...Automated performance tuning of data management systems offer various benefits such as improved performance, declined administration costs, and reduced workloads to database administrators (DBAs). Currently, DBAs tune the performance of database systems with a little help from the database servers. In this paper, we propose a new technique for automated performance tuning of data management systems. Firstly, we show how to use the periods of low workload time for performance improvements in the periods of high workload time. We demonstrate that extensions of a database system with materialised views and indices when a workload is low may contribute to better performance for a successive period of high workload. The paper proposes several online algorithms for continuous processing of estimated database workloads and for the discovery of the best plan for materialised view and index database extensions and of elimination of the extensions that are no longer needed. We present the results of experiments that show how the proposed automated performance tuning technique improves the overall performance of a data management system. 展开更多
This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and i...This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences.展开更多
This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media...This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.展开更多
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.
基金supported by National Natural Science Foundation of China(Grants 72474022,71974011,72174022,71972012,71874009)"BIT think tank"Promotion Plan of Science and Technology Innovation Program of Beijing Institute of Technology(Grants 2024CX14017,2023CX13029).
文摘As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].
文摘With the rise of data-intensive research,data literacy has become a critical capability for improving scientific data quality and achieving artificial intelligence(AI)readiness.In the biomedical domain,data are characterized by high complexity and privacy sensitivity,calling for robust and systematic data management skills.This paper reviews current trends in scientific data governance and the evolving policy landscape,highlighting persistent challenges such as inconsistent standards,semantic misalignment,and limited awareness of compliance.These issues are largely rooted in the lack of structured training and practical support for researchers.In response,this study builds on existing data literacy frameworks and integrates the specific demands of biomedical research to propose a comprehensive,lifecycle-oriented data literacy competency model with an emphasis on ethics and regulatory awareness.Furthermore,it outlines a tiered training strategy tailored to different research stages—undergraduate,graduate,and professional,offering theoretical foundations and practical pathways for universities and research institutions to advance data literacy education.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFB3106900the National Natural Science Foundation of China under Grant 62171113the China Scholarship Council under Grant 202406080100.
文摘We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.
文摘National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chinese Academy of Medical Sciences under the oversight of the National Health Commission,NPHDC adheres to national regulations including the Scientific Data Management Measures and the National Science and Technology Infrastructure Service Platform Management Measures,and is committed to collecting,integrating,managing,and sharing biomedical and health data through openaccess platform,fostering open sharing and engaging in international cooperation.
基金supported by:the 2023 Basic Public Welfare Research Project of the Wenzhou Science and Technology Bureau“Research on Multi-Source Data Classification and Grading Standards and Intelligent Algorithms for Higher Education Institutions”(Project No.G2023094)Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions(Grant/Award Number:2024QN061)2023 Basic Public Welfare Research Project of Wenzhou(No.:S2023014).
文摘In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness.
文摘The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing a high efficient and low cost network multi-well data management architecture based on the General Logging Curve Theory and the Cif data format; 2, implementing efficient visit and transmission of multi-well data in C/S local network based on TCP/IP protocol; 3,ensuring the safety of multi-well data in store, visit and application based on Unix operating system security. By using CifNet system, the researcher in office or at home can visit curves of any borehole in any working area of any oilfield. The application foreground of CifNet system is also commented.
基金Sponsored by Scientific Technology Development Project of Heilongjiang (Grant No.WH05A01) and Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT.MD2003.21).
文摘The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model of this PDM system. The integration key technology of PDM and CAD systems are discussed, the isomerous interface characteristics between CAD and PDM systems are analyzed, and finally, the integration mode of the PDM and CAD systems is given. Using these technologies, the integration of PDM and CAD systems is realized and the consistence of data in PDM and CAD systems is kept. Finally, the Product Data Management system is developed, which has been tested on development process of the hydraulic generator. The running process is stable and safety.
文摘Artificial intelligence(AI)relies on data and algorithms.State-of-the-art(SOTA)AI smart algorithms have been developed to improve the performance of AI-oriented structures.However,model-centric approaches are limited by the absence of high-quality data.Data-centric AI is an emerging approach for solving machine learning(ML)problems.It is a collection of various data manipulation techniques that allow ML practitioners to systematically improve the quality of the data used in an ML pipeline.However,data-centric AI approaches are not well documented.Researchers have conducted various experiments without a clear set of guidelines.This survey highlights six major data-centric AI aspects that researchers are already using to intentionally or unintentionally improve the quality of AI systems.These include big data quality assessment,data preprocessing,transfer learning,semi-supervised learning,machine learning operations(MLOps),and the effect of adding more data.In addition,it highlights recent data-centric techniques adopted by ML practitioners.We addressed how adding data might harm datasets and how HoloClean can be used to restore and clean them.Finally,we discuss the causes of technical debt in AI.Technical debt builds up when software design and implementation decisions run into“or outright collide with”business goals and timelines.This survey lays the groundwork for future data-centric AI discussions by summarizing various data-centric approaches.
基金the National Key Project Foundation of China (No. 2001BA201A0605) and partially supported by the State Key Lab for Mechanical Transmission..
文摘A new web product data management architecture is presented. The three-tier web architecture and Simple Object Access Protocol (SOAP) are combined to build the web-based product data management (PDM) system which includes three tiers: the user services tier, the business services tier, and the data services tier. The client service component uses the server-side technology, and Extensible Markup Language (XML) web service which uses SOAP as the communication protocol is chosen as the business service component. To illustrate how to build a web-based PDM system using the proposed architecture, a case PDM system which included three logical tires was built. To use the security and central management features of the database, a stored procedure was recommended in the data services tier. The business object was implemented as an XML web service so that client could use standard internet protocols to communicate with the business object from any platform. In order to satisfy users using all sorts of browser, the server-side technology and Microsoft ASP.NET was used to create the dynamic user interface.
文摘PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.
文摘Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.
文摘In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving through the study on FOXBASE computer language. This paper elabo-rates the overall conception of this system , indicates the main task which should he completed in this system and introduces its module structure and main functions.
文摘Before the implementation of product data management (PDM) system, person model and enterprise process model (EPM) must be firstly established. For the convenience of project management, all the related users must be allocated to the “Person User Role Group” net. Based on the person model and the direction of information flow, the EPM is established subsequently. The EPM consists of several release levels, in which the access controls are defined. The EPM procedure shows the blueprint of the workflow process structure. The establishment of person model and EPM in an enterprise has been instanced at the end of this paper.
文摘Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected vehicle) technologies represent a new approach to capturing and using needed transportation data in real time or near real time. In the case of Michigan, several ITS programs have been launched successfully, but independently of each other. The objective of this research is to evaluate and assess all important factors that will influence the collection, management and use of ITS data, and recommend strategies to develop integrated, dynamic and adaptive data management systems for state transportation agencies.
文摘The brokering approach can be successfully used to overcome the crucial question of searching among enormous amount of data (raw and/or processed) produced and stored in different information systems. In this paper, authors describe the Data Management System the DMS (Data Management System) developed by INGV (Istituto Nazionale di Geofisica e Vulcanologia) to support the brokering system GEOSS (Global Earth Observation System of Systems) adopted for the ARCA (Arctic Present Climate Change and Past Extreme Events) project. This DMS includes heterogeneous data that contributes to the ARCA objective (www.arcaproject.it) focusing on multi-parametric and multi-disciplinary studies on the mechanism (s) behind the release of large volumes of cold and fresh water from melting of ice caps. The DMS is accessible directly at the www.arca.rm.ingv.it, or through the IADC (Italian Arctic Data Center) at http://arcticnode.dta.cnr.it/iadc/gi-portal/index.jsp that interoperates with the GEOSS brokering system (http://www.geoportal.org0 making easy and fast the search of specific data set and its URL.
文摘Automated performance tuning of data management systems offer various benefits such as improved performance, declined administration costs, and reduced workloads to database administrators (DBAs). Currently, DBAs tune the performance of database systems with a little help from the database servers. In this paper, we propose a new technique for automated performance tuning of data management systems. Firstly, we show how to use the periods of low workload time for performance improvements in the periods of high workload time. We demonstrate that extensions of a database system with materialised views and indices when a workload is low may contribute to better performance for a successive period of high workload. The paper proposes several online algorithms for continuous processing of estimated database workloads and for the discovery of the best plan for materialised view and index database extensions and of elimination of the extensions that are no longer needed. We present the results of experiments that show how the proposed automated performance tuning technique improves the overall performance of a data management system.
文摘This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences.
文摘This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.