期刊文献+
共找到4,333篇文章
< 1 2 217 >
每页显示 20 50 100
Accurate method based on data filtering for quantitative multi-element analysis of soils using CF-LIBS
1
作者 韩伟伟 孙对兄 +7 位作者 张国鼎 董光辉 崔小娜 申金成 王浩亮 张登红 董晨钟 苏茂根 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期149-158,共10页
To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis o... To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis. 展开更多
关键词 laser-induced breakdown spectroscopy SOIL data filtering quantitative analysis multielement
在线阅读 下载PDF
The Complete K-Level Tree and Its Application to Data Warehouse Filtering
2
作者 马琳 Wang Kuanquan +1 位作者 Li Haifeng Zucker J D 《High Technology Letters》 EI CAS 2003年第4期13-16,共4页
This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. T... This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. The maximum depth and the minimum depth of an individual CKT are equal and identical to data’s length. Insertion and deletion operations are defined; storage method and filtering algorithm are also designed for good compensation between efficiency and complexity. Applications to computer aided teaching of Chinese and protein selection show that an about 30% reduction of storage consumption and an over 60% reduction of computation may be easily obtained. 展开更多
关键词 complete K level tree data warehouse organization data filtering data retrieval
在线阅读 下载PDF
Detection of rock joints and opening degrees based on drilling parameters and moving average filter
3
作者 Wenhao Yi Mingnian Wang +2 位作者 Qinyong Xia Honglin Shen Siguang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6130-6144,共15页
2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures... 2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures.Hammer and rotary drilling rigs,commonly employed as rock-breaking equipment in tunneling,inevitably encounter joints with varying opening degrees during construction.This research aims to enhance the sampling frequency of hammer and rotary drilling rigs and optimize the joint detection algorithm,thereby equipping these rigs with the capability to detect joint opening degrees.This paper develops high-frequency acquisition equipment for drilling parameters to realize millimeter-level data acquisition.Drilling experiments on jointed rock mass are conducted under conditions corresponding to joint opening degrees of 1 mm,3 mm,and 5 mm.The relationships among joint opening degree,drilling parameters,and width of rock failure region are investigated.A joint opening degree detection algorithm is proposed based on the drilling parameters and moving average filter.The results indicate that the curves of penetration velocity and rotary pressure along the drilling direction exhibit a three-segment distribution,i.e."stable segment-adjustment segment-stable segment".The variation curves of drilling parameters display a“velocity mountain”and a“pressure valley”in the failure region.The relative errors in joint opening degree estimation based on penetration velocity and rotary pressure range from 3.4%to 32%and from 6%to 35%,with average relative errors of 12.95%and 16.24%,respectively. 展开更多
关键词 Joint opening degree Drilling parameters Hammer and rotary drilling rigs Drilling experiment data filtering
在线阅读 下载PDF
Research on Kalman-filter based multisensor data fusion 被引量:14
4
作者 Chen Yukun Si Xicai Li Zhigang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期497-502,共6页
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat... Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method. 展开更多
关键词 MULTISENSOR data fusion Kalman filter.
在线阅读 下载PDF
An Adaptive Estimation of Forecast Error Covariance Parameters for Kalman Filtering Data Assimilation 被引量:7
5
作者 Xiaogu ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期154-160,共7页
An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assim- ilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts.... An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assim- ilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts. This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by minimizing -2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied to Kalman filtering data assimilation with imperfect models when the model error statistics are not known. A simple nonlinear model (Burgers' equation model) is used to demonstrate the efficacy of the proposed approach. 展开更多
关键词 data assimilation Kahnan filter ensemble prediction ESTIMATION
在线阅读 下载PDF
Cardinality compensation method based on information-weighted consensus filter using data clustering for multi-target tracking 被引量:4
6
作者 Sunyoung KIM Changho KANG Changook PARK 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第9期2164-2173,共10页
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy... In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques. 展开更多
关键词 CARDINALITY compensation Cardinalized probability HYPOTHESIS density filter data clustering Information-weighted consensus filter MULTI-TARGET tracking
原文传递
Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS 被引量:2
7
作者 Yafei Ren Xizhen Ke 《Intelligent Information Management》 2010年第7期417-421,共5页
This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the larg... This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy. 展开更多
关键词 Micro-Electro-Mechanical-System Particle filter data Fusion Extended KALMAN filterING
暂未订购
Application of S-transform threshold filtering in Anhui experiment airgun sounding data de-noising 被引量:1
8
作者 Chenglong Zheng Xiaofeng Tian +2 位作者 Zhuoxin Yang Shuaijun Wang Zhenyu Fan 《Geodesy and Geodynamics》 2018年第4期320-327,共8页
As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following charac... As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted. 展开更多
关键词 S transform Time-frequency filtering Airgun data Threshold filtering DE-NOISING
原文传递
Distributed multisensor data fusion based on Kalman filtering and the parallel implementation 被引量:1
9
作者 郭强 郁松年 《Journal of Shanghai University(English Edition)》 CAS 2006年第2期118-122,共5页
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In t... The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time. 展开更多
关键词 data fusion Kalman filtering multisensor systems distributed estimation.
在线阅读 下载PDF
Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation 被引量:26
10
作者 Fuqing ZHANG Meng ZHANG James A. HANSEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期1-8,共8页
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim... This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations. 展开更多
关键词 data assimilation four-dimensional variational data assimilation ensemble Kalman filter Lorenz model hybrid method
在线阅读 下载PDF
Multi-sensor Data Fusion for Wheelchair Position Estimation with Unscented Kalman Filter 被引量:5
11
作者 Derradji Nada Mounir Bousbia-Salah Maamar Bettayeb 《International Journal of Automation and computing》 EI CSCD 2018年第2期207-217,共11页
This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy mea- surements. The measuring system is based on two odometers placed on the axis of the wheels combined w... This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy mea- surements. The measuring system is based on two odometers placed on the axis of the wheels combined with a magnetic compass to determine the position and orientation. Determination of displacements is implemented by an accelerometer. Data coming from sensors are combined and used as inputs to unscented Kalman filter (UKF). Two data fusion architectures: measurement fusion (MF) and state vector fusion (SVF) are proposed to merge the available measurements. Comparative studies of these two architectures show that the MF architecture provides states estimation with relatively less uncertainty compared to SVF. However, odometers measurements determine the position with relatively high uncertainty followed by the accelerometer measurements. Therefore, fusion in the navigation system is needed. The obtained simulation results show the effectiveness of proposed architectures. 展开更多
关键词 data fusion unscented Kalman filter (UKF) measurement fusion (MF) NAVIGATION state vector fusion (SVF) wheelchair.
原文传递
A Data-Adaptive Filter of the Tahiti-Darwin Southern Oscillation Index and the Associate Scheme of Filling Data Gaps
12
作者 张邦林 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期447-458,共12页
The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. ... The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. In order to reduce the level of noise in the SO index, this paper introduces a fully data-adaptive filter based on singular spectrum analysis. Another interesting aspect of the filter is that it can be used to fill data gaps of the SO index by an iterative process. Eventually, a noiseless long-period data series without any gaps is obtained. 展开更多
关键词 Southern Oscillation index data-adaptive filter Scheme of filling data gaps Iterative process
在线阅读 下载PDF
Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction 被引量:1
13
作者 Di LIU Zhong-bo YU Hai-shen LV 《Water Science and Engineering》 EI CAS 2010年第4期361-377,共17页
Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter... Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone. 展开更多
关键词 data assimilation support vector machines ensemble Kalman filter soil moisture
在线阅读 下载PDF
Fast Rate Fault Detection Filter for Multirate Sampled-data Systems 被引量:3
14
作者 ZHONG Mai-Ying MA Chuan-Feng LIU Yun-Xia 《自动化学报》 EI CSCD 北大核心 2006年第3期433-437,共5页
This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant disc... This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results. 展开更多
关键词 故障检测 滤波器 FDF 残差 MSD系统
在线阅读 下载PDF
ROBUST FILTERS WITH SAMPLED-DATA ESTIMATION COVARANCE CONSTRAINT FOR UNCERTAIN CONTINUOUS-TIME SYSTEMS
15
作者 霍沛军 王子栋 郭治 《Journal of Shanghai Jiaotong university(Science)》 EI 1999年第1期39-44,共6页
This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. T... This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. The primary purpose of this paper is to design robust discrete time Kalman filters such that the sampled data estimation covariance is not more than a prespecified value, and therefore the error variances achieve the desired constraints. It is shown that the addressed problem can be converted into a similar problem for a fictitious discrete time system. The existence conditions and the explicit expression of desired filters were both derived. Finally, a simple example was presented to demonstrate the effectiveness of the proposed design procedure. 展开更多
关键词 UNCERTAIN SYSTEMS continuous time SYSTEMS ROBUST filterS sampled data ESTIMATION covariance intersample behaviour
在线阅读 下载PDF
MODEL RECONSTRUCTION FROM CLOUD DATA FOR RAPID PROTOTYPE MANUFACTURING 被引量:1
16
作者 张丽艳 周儒荣 周来水 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期170-175,共6页
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes... Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method. 展开更多
关键词 reverse engineering model reconstruction cloud data data filtering hole filling
在线阅读 下载PDF
State Estimation for Non-linear Sampled-Data Descriptor Systems:A Robust Extended Kalman Filtering Approach
17
作者 Mao Wang Tiantian Liang Zhenhua Zhou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第5期24-31,共8页
This paper proposes a state estimation method for a class of norm bounded non linear sampled data descriptor systems using the Kalman filtering method. The descriptor model is firstly discretized to obtain a discrete ... This paper proposes a state estimation method for a class of norm bounded non linear sampled data descriptor systems using the Kalman filtering method. The descriptor model is firstly discretized to obtain a discrete time non singular one. Then a model of robust extended Kalman filter is proposed for the state estimation based on the discretized non linear non singular system. As parameters are introduced in for transforming descriptor systems into non singular ones there exist uncertainties in the state of the systems. To solve this problem an optimized upper bound is proposed so that the convergence of the estimation error co variance matrix is guaranteed in the paper. A simulating example is proposed to verify the validity of this method at last. 展开更多
关键词 SAMPLED-data SYSTEM DESCRIPTOR SYSTEM state estimation KALMAN filterING REKF
在线阅读 下载PDF
Reservoir Multiscale Data Assimilation Using the Ensemble Kalman Filter
18
作者 Santha R. Akella 《Applied Mathematics》 2011年第2期165-180,共16页
In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coa... In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coarse scale (s), as an additional constraint. Relationship between various scales has been modeled via upscaling techniques. The proposed coarse-scale EnKF algorithm is recursive and easily implementable. Our numerical results with the coarse-scale data provide improved fine-scale field estimates when compared to the results with regular EnKF (which did not incorporate the coarse-scale data). We also tested our algorithm with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data, yielded improved estimates. 展开更多
关键词 KALMAN filter RESERVOIR ENGINEERING UNCERTAINTY Quantification Multiscale data
暂未订购
基于多道卡尔曼滤波神经网络的无监督微地震去噪方法
19
作者 张岩 张永雪 +4 位作者 魏子心 董宏丽 韩非 张林军 汪靖哲 《地球物理学报》 北大核心 2026年第1期353-365,共13页
微地震数据中有效信号的振幅、频率,及噪声具有显著的时变特征,当前微地震去噪方法中基于卡尔曼滤波方法高度依赖经验调参而影响应用效率,深度学习方法往往需要大量有效样本监督学习.针对以上问题,提出一种结合卡尔曼滤波与循环神经网... 微地震数据中有效信号的振幅、频率,及噪声具有显著的时变特征,当前微地震去噪方法中基于卡尔曼滤波方法高度依赖经验调参而影响应用效率,深度学习方法往往需要大量有效样本监督学习.针对以上问题,提出一种结合卡尔曼滤波与循环神经网络的无监督微地震数据去噪方法.首先,建立多道微地震数据的卡尔曼滤波状态预测与更新方程,充分利用多道相关性提高卡尔曼滤波参数的表征能力;其次,设计多道卡尔曼滤波状态预测与更新的RNN运算算子,通过链式梯度自动求取方式优化卡尔曼滤波的参数,构建基于循环神经网络模式的多道卡尔曼网络去噪;再次,结合无监督的微地震去噪训练方法,实现卡尔曼参数自动优化,避免有效数据标签的过度依赖;最后,通过理论正演与实际微地震数据的实验结果表明,本文方法在微地震去噪准确性与效率上优于传统卡尔曼滤波与变分自编码器等同类方法. 展开更多
关键词 微地震数据处理 卡尔曼滤波 循环神经网络 噪声压制 无监督网络
在线阅读 下载PDF
Links between Kalman Filtering and Data Assimilation with Generalized Least Squares
20
作者 William Menke 《Applied Mathematics》 2022年第6期566-584,共19页
Kalman filtering (KF) is a popular form of data assimilation, especially in real-time applications. It combines observations with an equation that describes the dynamic evolution of a system to produce an estimate of ... Kalman filtering (KF) is a popular form of data assimilation, especially in real-time applications. It combines observations with an equation that describes the dynamic evolution of a system to produce an estimate of its present-time state. Although KF does not use future information in producing an estimate of the state vector, later reanalysis of the archival data set can produce an improved estimate, in which all data, past, present and future, contribute. We examine the case in which the reanalysis is performed using generalized least squares (GLS), and establish the relationship between the real-time Kalman estimate and the GLS reanalysis. We show that the KF solution at a given time is equal to the GLS solution that one would obtain if data excluded future times. Furthermore, we show that the recursive procedure in KF is exactly equivalent to the solution of the GLS problem via Thomas’ algorithm for solving the block-tridiagonal matrix that arises in the reanalysis problem. This connection suggests that GLS reanalysis is better considered the final step of a single process, rather than a “different method” arbitrarily being applied, post factor. The connection also allows the concept of resolution, so important in other areas of inverse theory, to be applied to KF formulations. In an exemplary thermal diffusion problem, model resolution is found to be somewhat localized in both time and space, but with an extremely rough averaging kernel. 展开更多
关键词 Kalman filter Generalized Least Squares Bayesian Inference data Assimilation REAL-TIME RESOLUTION
在线阅读 下载PDF
上一页 1 2 217 下一页 到第
使用帮助 返回顶部