Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carded out i...Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carded out in a limited time frame during the partial solar eclipse that occurred on 2011 January 4 and was observed in Canakkale and Ankara, Turkey. Additionally, records of the geomagnetic field spanning 24 hours, obtained from another observatory (in Iznik, Turkey), were also analyzed to check for any peculiar variations. In the data processing stage, a polynomial fit, following the application of a running average routine, was applied to the geomagnetic field data sets. Geomagnetic field data sets indicated there was a characteristic decrease at the beginning of the solar eclipse and this decrease can be well-correlated with previous geomagnetic field measurements that were taken during the total solar eclipse that was observed in Turkey on 2006 March 29. The behavior of the geomagnetic field is also consistent with previous observations in the literature. As a result of these analyses, it can be suggested that eclipses can cause a shielding effect on the geomagnetic field of the Earth.展开更多
Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (D...Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.展开更多
Noise is a significant part within a millimeter-wave molecular line datacube.Analyzing the noise improves our understanding of noise characteristics,and further contributes to scientific discoveries.We measure the noi...Noise is a significant part within a millimeter-wave molecular line datacube.Analyzing the noise improves our understanding of noise characteristics,and further contributes to scientific discoveries.We measure the noise level of a single datacube from MWISP and perform statistical analyses.We identified major factors which increase the noise level of a single datacube,including bad channels,edge effects,baseline distortion and line contamination.Cleaning algorithms are applied to remove or reduce these noise components.As a result,we obtained the cleaned datacube in which noise follows a positively skewed normal distribution.We further analyzed the noise structure distribution of a 3 D mosaicked datacube in the range l=40°7 to 43°3 and b=-2°3 to 0°3 and found that noise in the final mosaicked datacube is mainly characterized by noise fluctuation among the cells.展开更多
The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from whi...The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.展开更多
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th...It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.展开更多
Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surfa...Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4km^4km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.展开更多
Predicting seeing of astronomical observations can provide hints of the quality of optical imaging in the near future,and facilitate flexible scheduling of observation tasks to maximize the use of astronomical observa...Predicting seeing of astronomical observations can provide hints of the quality of optical imaging in the near future,and facilitate flexible scheduling of observation tasks to maximize the use of astronomical observatories.Traditional approaches to seeing prediction mostly rely on regional weather models to capture the in-dome optical turbulence patterns.Thanks to the developing of data gathering and aggregation facilities of astronomical observatories in recent years,data-driven approaches are becoming increasingly feasible and attractive to predict astronomical seeing.This paper systematically investigates data-driven approaches to seeing prediction by leveraging various big data techniques,from traditional statistical modeling,machine learning to new emerging deep learning methods,on the monitoring data of the Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST).The raw monitoring data are preprocessed to allow for big data modeling.Then we formulate the seeing prediction task under each type of modeling framework and develop seeing prediction models through using representative big data techniques,including ARIMA and Prophet for statistical modeling,MLP and XGBoost for machine learning,and LSTM,GRU and Transformer for deep learning.We perform empirical studies on the developed models with a variety of feature configurations,yielding notable insights into the applicability of big data techniques to the seeing prediction task.展开更多
Cross-correlation analysis and wavelet transform methods are proposed to investigate the phase relationship between the monthly sunspot group numbers in the solar northern and southern hemispheres. It is found that (...Cross-correlation analysis and wavelet transform methods are proposed to investigate the phase relationship between the monthly sunspot group numbers in the solar northern and southern hemispheres. It is found that (1) the monthly sunspot group numbers in the northern hemisphere begin two months earlier than those in the southern one, which should lead to phase asynchrony between them but with a slight effect; (2) the Schwabe cycle length for the monthly sunspot group numbers in the two hemispheres obviously differs from each other, and the mean Schwabe cycle length of the monthly sunspot group numbers in the northern hemisphere is slightly larger than that in the southern one; (3) the monthly sunspot group numbers in the northern hemisphere precede those in the southern hemisphere during the years of about 1874- 1927, after which, the southern hemisphere leads the northern hemisphere in the years 1928-1964, and then the northern hemisphere leads in time till the present.展开更多
We analyzed the radio light curves of 3C 454.3 at frequencies 22 and 37 GHz taken from the database of Metsaeovi Radio Observatory, and found evidence of quasi-periodic activity. The light curves show great activity w...We analyzed the radio light curves of 3C 454.3 at frequencies 22 and 37 GHz taken from the database of Metsaeovi Radio Observatory, and found evidence of quasi-periodic activity. The light curves show great activity with very complicated non-sinusoidal variations. Two possible periods, a very weak one of 1.57 ± 0.12 yr and a very strong one of 6.15 ±0.50 yr were consistently identified by two methods, the Jurkevich method and power specmun estimation. The period of 6.15 ± 0.50 yr is consistent with results previously reported by Ciaramella et al. and Webb et al. Applying the binary black hole model to the central structure we found black hole masses of 1.53 × 10^9M⊙ and 1.86 × 10^8M⊙, and predicted that the next radio outburst is to take place in 2006 March and April.展开更多
Photometric observations of AH Cnc, a W UMa-type system in the open cluster M67, were car- fled out by using the 50BIN telescope. About 100h of time-series/3- and V-band data were taken, based on which eight new times...Photometric observations of AH Cnc, a W UMa-type system in the open cluster M67, were car- fled out by using the 50BIN telescope. About 100h of time-series/3- and V-band data were taken, based on which eight new times of light minima were determined. By applying the Wilson-Devinney method, the light curves were modeled and a revised photometric solution of the binary system was derived. We con- firmed that AH Cnc is a deep contact (f = 51%), low mass-ratio (q - 0.156) system. Adopting the distance modulus derived from study of the host cluster, we have re-calculated the physical parameters of the binary system, namely the masses and radii. The masses and radii of the two components were estimated to be respectively 1.188(4-0.061) Me, 1.332(4-0.063) RQ for the primary component and 0.185(4-0.032) Me, 0.592(4-0.051) Re for the secondary. By adding the newly derived minimum timings to all the available data, the period variations of AH Cnc were studied. This shows that the orbital period of the binary is con- tinuously increasing at a rate of dp/dt = 4.29 x 10-10 d yr-1. In addition to the long-term period increase, a cyclic variation with a period of 35.26 yr was determined, which could be attributed to an unresolved tertiary component of the system.展开更多
We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in their own fields as w...We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales- NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of200- 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from10- 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.展开更多
Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stella evolution.With the advent of the era of astronomical big data,multimodal data are available and theor...Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stella evolution.With the advent of the era of astronomical big data,multimodal data are available and theoretically effective for stellar classification and radius estimation.A problem is how to improve the performance of this task by jointly using the multimodal data.However,existing research primarily focuses on using single-modal data.To this end,this paper proposes a model,Multi-Modal SCNet,and its ensemble model Multimodal Ensemble fo Stellar Classification and Regression(MESCR)for improving stellar classification and radius estimation performance by fusing two modality data.In this problem,a typical phenomenon is that the sample numbers o some types of stars are evidently more than others.This imbalance has negative effects on model performance Therefore,this work utilizes a weighted sampling strategy to deal with the imbalance issues in MESCR.Som evaluation experiments are conducted on a test set for MESCR and the classification accuracy is 96.1%,and th radius estimation performance Mean of Absolute Error andσare 0.084 dex and 0.149 R_(⊙),respectively.Moreover we assessed the uncertainty of model predictions,confirming good consistency within a reasonable deviation range.Finally,we applied our model to 50,871,534 SDSS stars without spectra and published a new catalog.展开更多
The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the ...The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the main emission line of Fe XVⅢin the 94?of the Atmospheric Imaging Assembly.However,the diagnostic algorithms for Fe XVⅢ,including the differential emission measure(DEM)and linear diagnostics proposed by Del based on the DEM,have been greatly limited for a long time,and the results obtained are different from the predictions.In this paper,we use the outlier detection method to establish the nonlinear correlation between 94?and 171,193,211?based on the former researches by others.A neural network based on 171,193,211?is constructed to replace the low-temperature emission lines in the ARs of 94?.The predicted results are regarded as the low-temperature components of 94?,and then the predicted results are subtracted from 94?to obtain the outlier component of 94?,or Fe XVⅢ.Then,the outlier components obtained by neural network are compared with the Fe XVⅢobtained by DEM and Del's method,and a high similarity is found,which proves the reliability of neural network to obtain the high-temperature components of ARs,but there are still many differences.In order to analyze the differences between the Fe XVⅢobtained by the three methods,we subtract the Fe XVⅢobtained by the DEM and Del's method from the Fe XVⅢobtained by the neural network to obtain the residual value,and compare it with the results of Fe XIV in the temperature range of 6.1-6.45 MK.It is found that there is a great similarity,which also shows that the Fe XVⅢobtained by DEM and Del's method still has a large low-temperature component dominated by Fe XIV,and the Fe XVⅢobtained by neural network is relatively pure.展开更多
We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis(MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral l...We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis(MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral library into a few Independent Components(ICs), and the galaxy spectrum can be reconstructed by these ICs. Compared to other algorithms which decompose a galaxy spectrum into a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in efficiency. To check the reliability of this spectral analysis method, three different methods are used:(1) parameter recovery for simulated galaxies,(2) comparison with parameters estimated by other methods, and(3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the physical parameters of galaxies. We also apply our spectral analysis method to the DEEP2 spectroscopic data, and find it can provide excellent fitting results for low signal-to-noise spectra.展开更多
The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is mean...The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.展开更多
文摘Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carded out in a limited time frame during the partial solar eclipse that occurred on 2011 January 4 and was observed in Canakkale and Ankara, Turkey. Additionally, records of the geomagnetic field spanning 24 hours, obtained from another observatory (in Iznik, Turkey), were also analyzed to check for any peculiar variations. In the data processing stage, a polynomial fit, following the application of a running average routine, was applied to the geomagnetic field data sets. Geomagnetic field data sets indicated there was a characteristic decrease at the beginning of the solar eclipse and this decrease can be well-correlated with previous geomagnetic field measurements that were taken during the total solar eclipse that was observed in Turkey on 2006 March 29. The behavior of the geomagnetic field is also consistent with previous observations in the literature. As a result of these analyses, it can be suggested that eclipses can cause a shielding effect on the geomagnetic field of the Earth.
基金Supported by the National Natural Science Foundation of China
文摘Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.
基金supported by the National Key R&D Program of China(2017YFA0402701)Key Research Program of Frontier Sciences of CAS(QYZDJ-SSW-SLH047)partially supported by the National Natural Science Foundation of China(Grant No.U2031202)。
文摘Noise is a significant part within a millimeter-wave molecular line datacube.Analyzing the noise improves our understanding of noise characteristics,and further contributes to scientific discoveries.We measure the noise level of a single datacube from MWISP and perform statistical analyses.We identified major factors which increase the noise level of a single datacube,including bad channels,edge effects,baseline distortion and line contamination.Cleaning algorithms are applied to remove or reduce these noise components.As a result,we obtained the cleaned datacube in which noise follows a positively skewed normal distribution.We further analyzed the noise structure distribution of a 3 D mosaicked datacube in the range l=40°7 to 43°3 and b=-2°3 to 0°3 and found that noise in the final mosaicked datacube is mainly characterized by noise fluctuation among the cells.
基金supported by the National Natural Science Foundation of China (Grant No. 11173038)
文摘The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.
文摘It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.
基金Supported by the National Natural Science Foundation of China
文摘Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4km^4km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.
基金supported by the National Natural Science Foundation of China(U1931207,61602278 and 61702306)Sci.&Tech.Development Fund of Shandong Province of China(2016ZDJS02A11,ZR2017BF015 and ZR2017MF027)+1 种基金the Humanities and Social Science Research Project of the Ministry of Education(18YJAZH017)the Taishan Scholar Program of Shandong Province,and the Science and Technology Support Plan of Youth Innovation Team of Shandong Higher School(2019KJN024)。
文摘Predicting seeing of astronomical observations can provide hints of the quality of optical imaging in the near future,and facilitate flexible scheduling of observation tasks to maximize the use of astronomical observatories.Traditional approaches to seeing prediction mostly rely on regional weather models to capture the in-dome optical turbulence patterns.Thanks to the developing of data gathering and aggregation facilities of astronomical observatories in recent years,data-driven approaches are becoming increasingly feasible and attractive to predict astronomical seeing.This paper systematically investigates data-driven approaches to seeing prediction by leveraging various big data techniques,from traditional statistical modeling,machine learning to new emerging deep learning methods,on the monitoring data of the Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST).The raw monitoring data are preprocessed to allow for big data modeling.Then we formulate the seeing prediction task under each type of modeling framework and develop seeing prediction models through using representative big data techniques,including ARIMA and Prophet for statistical modeling,MLP and XGBoost for machine learning,and LSTM,GRU and Transformer for deep learning.We perform empirical studies on the developed models with a variety of feature configurations,yielding notable insights into the applicability of big data techniques to the seeing prediction task.
基金supported by the National Natural Science Foundation of China (Grant No. 11003041)the Yunnan Science Foundation of China under grant number2009CD120the Chinese Academy of Sciences
文摘Cross-correlation analysis and wavelet transform methods are proposed to investigate the phase relationship between the monthly sunspot group numbers in the solar northern and southern hemispheres. It is found that (1) the monthly sunspot group numbers in the northern hemisphere begin two months earlier than those in the southern one, which should lead to phase asynchrony between them but with a slight effect; (2) the Schwabe cycle length for the monthly sunspot group numbers in the two hemispheres obviously differs from each other, and the mean Schwabe cycle length of the monthly sunspot group numbers in the northern hemisphere is slightly larger than that in the southern one; (3) the monthly sunspot group numbers in the northern hemisphere precede those in the southern hemisphere during the years of about 1874- 1927, after which, the southern hemisphere leads the northern hemisphere in the years 1928-1964, and then the northern hemisphere leads in time till the present.
文摘We analyzed the radio light curves of 3C 454.3 at frequencies 22 and 37 GHz taken from the database of Metsaeovi Radio Observatory, and found evidence of quasi-periodic activity. The light curves show great activity with very complicated non-sinusoidal variations. Two possible periods, a very weak one of 1.57 ± 0.12 yr and a very strong one of 6.15 ±0.50 yr were consistently identified by two methods, the Jurkevich method and power specmun estimation. The period of 6.15 ± 0.50 yr is consistent with results previously reported by Ciaramella et al. and Webb et al. Applying the binary black hole model to the central structure we found black hole masses of 1.53 × 10^9M⊙ and 1.86 × 10^8M⊙, and predicted that the next radio outburst is to take place in 2006 March and April.
基金supported by the National Natural Science Foundation of China(Nos. U1131121,11303021,U1231202,11473037 and 11373073)
文摘Photometric observations of AH Cnc, a W UMa-type system in the open cluster M67, were car- fled out by using the 50BIN telescope. About 100h of time-series/3- and V-band data were taken, based on which eight new times of light minima were determined. By applying the Wilson-Devinney method, the light curves were modeled and a revised photometric solution of the binary system was derived. We con- firmed that AH Cnc is a deep contact (f = 51%), low mass-ratio (q - 0.156) system. Adopting the distance modulus derived from study of the host cluster, we have re-calculated the physical parameters of the binary system, namely the masses and radii. The masses and radii of the two components were estimated to be respectively 1.188(4-0.061) Me, 1.332(4-0.063) RQ for the primary component and 0.185(4-0.032) Me, 0.592(4-0.051) Re for the secondary. By adding the newly derived minimum timings to all the available data, the period variations of AH Cnc were studied. This shows that the orbital period of the binary is con- tinuously increasing at a rate of dp/dt = 4.29 x 10-10 d yr-1. In addition to the long-term period increase, a cyclic variation with a period of 35.26 yr was determined, which could be attributed to an unresolved tertiary component of the system.
基金support by Chinese Academy of Sciences through the Silk Road Project at NAOC,through the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists,Grant Number 2009S1-5 (RS)the “Qianren” special foreign experts program of China+2 种基金funded by the Ministry of Finance of the People’s Republic of China under the grant ZDY Z2008-2,has been used for the simulationsthe supercomputer “The Milky Way System” at Julich Supercomputing Centre in Germany,built for SFB881 at the University of Heidelberg,Germanythe special support by the NAS Ukraine under the Main Astronomical Observatory GPU/GRID computing cluster project
文摘We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit(GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales- NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of200- 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from10- 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.
基金supported by the National Natural Science Foundation of China(12261141689,12273075,and 12373108)the National Key R&D Program of China No.2019YFA0405502the science research grants from the China Manned Space Project with No.CMS-CSST-2021-B05。
文摘Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stella evolution.With the advent of the era of astronomical big data,multimodal data are available and theoretically effective for stellar classification and radius estimation.A problem is how to improve the performance of this task by jointly using the multimodal data.However,existing research primarily focuses on using single-modal data.To this end,this paper proposes a model,Multi-Modal SCNet,and its ensemble model Multimodal Ensemble fo Stellar Classification and Regression(MESCR)for improving stellar classification and radius estimation performance by fusing two modality data.In this problem,a typical phenomenon is that the sample numbers o some types of stars are evidently more than others.This imbalance has negative effects on model performance Therefore,this work utilizes a weighted sampling strategy to deal with the imbalance issues in MESCR.Som evaluation experiments are conducted on a test set for MESCR and the classification accuracy is 96.1%,and th radius estimation performance Mean of Absolute Error andσare 0.084 dex and 0.149 R_(⊙),respectively.Moreover we assessed the uncertainty of model predictions,confirming good consistency within a reasonable deviation range.Finally,we applied our model to 50,871,534 SDSS stars without spectra and published a new catalog.
基金supported by the National Natural Science Foundation of China under Grant Nos.U2031140,11873027,and 12073077。
文摘The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the main emission line of Fe XVⅢin the 94?of the Atmospheric Imaging Assembly.However,the diagnostic algorithms for Fe XVⅢ,including the differential emission measure(DEM)and linear diagnostics proposed by Del based on the DEM,have been greatly limited for a long time,and the results obtained are different from the predictions.In this paper,we use the outlier detection method to establish the nonlinear correlation between 94?and 171,193,211?based on the former researches by others.A neural network based on 171,193,211?is constructed to replace the low-temperature emission lines in the ARs of 94?.The predicted results are regarded as the low-temperature components of 94?,and then the predicted results are subtracted from 94?to obtain the outlier component of 94?,or Fe XVⅢ.Then,the outlier components obtained by neural network are compared with the Fe XVⅢobtained by DEM and Del's method,and a high similarity is found,which proves the reliability of neural network to obtain the high-temperature components of ARs,but there are still many differences.In order to analyze the differences between the Fe XVⅢobtained by the three methods,we subtract the Fe XVⅢobtained by the DEM and Del's method from the Fe XVⅢobtained by the neural network to obtain the residual value,and compare it with the results of Fe XIV in the temperature range of 6.1-6.45 MK.It is found that there is a great similarity,which also shows that the Fe XVⅢobtained by DEM and Del's method still has a large low-temperature component dominated by Fe XIV,and the Fe XVⅢobtained by neural network is relatively pure.
基金supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (No. XDB09000000)the National Basic Research Program of China (973 Program) (2015CB857004)the National Natural Science Foundation of China (NSFC, Nos. 11225315, 1320101002, 11433005 and 11421303)
文摘We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis(MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral library into a few Independent Components(ICs), and the galaxy spectrum can be reconstructed by these ICs. Compared to other algorithms which decompose a galaxy spectrum into a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in efficiency. To check the reliability of this spectral analysis method, three different methods are used:(1) parameter recovery for simulated galaxies,(2) comparison with parameters estimated by other methods, and(3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the physical parameters of galaxies. We also apply our spectral analysis method to the DEEP2 spectroscopic data, and find it can provide excellent fitting results for low signal-to-noise spectra.
文摘The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.