The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive da...The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded.展开更多
Plates vibrate when load moves on them. In this paper, the dynamic response of Mindlin plate analytical model was converted to its numerical form using finite difference algorithm. The numerical model was analysed to ...Plates vibrate when load moves on them. In this paper, the dynamic response of Mindlin plate analytical model was converted to its numerical form using finite difference algorithm. The numerical model was analysed to ascertain the critical parameters contributing to the deflection of Mindlin plate under a moving load. The examination was more reasonable as in the likelihood of the plate laying on a Pasternak foundation was put into thought. Likewise the impact of damping was not dismissed. The plate considered in this paper was an inclined Mindlin plate, where the impacts of shear deformation and rotatory inertia were considered. The numerical equations were solved with the help of a developed computer program and Matlab. The results were consistent with what we have in the literature. The effects of the Pasternak foundation, damping, angle of inclination, and the moving load to the dynamic response of the elastic plate were exceptionally self-evident.展开更多
In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex ...In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.展开更多
文摘The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded.
文摘Plates vibrate when load moves on them. In this paper, the dynamic response of Mindlin plate analytical model was converted to its numerical form using finite difference algorithm. The numerical model was analysed to ascertain the critical parameters contributing to the deflection of Mindlin plate under a moving load. The examination was more reasonable as in the likelihood of the plate laying on a Pasternak foundation was put into thought. Likewise the impact of damping was not dismissed. The plate considered in this paper was an inclined Mindlin plate, where the impacts of shear deformation and rotatory inertia were considered. The numerical equations were solved with the help of a developed computer program and Matlab. The results were consistent with what we have in the literature. The effects of the Pasternak foundation, damping, angle of inclination, and the moving load to the dynamic response of the elastic plate were exceptionally self-evident.
基金Science Foundation of Beijing Key LaboratoryUnder Grant No. EESR2004-4
文摘In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.