Chromium coatings with and without Al_2O_3 or Y_2O_3 particles were prepared by chromizing the as-deposited Ni-film with and without Al_2O_3 or Y_2O_3 particles using a conventional pack-cementation method at 800 ℃. ...Chromium coatings with and without Al_2O_3 or Y_2O_3 particles were prepared by chromizing the as-deposited Ni-film with and without Al_2O_3 or Y_2O_3 particles using a conventional pack-cementation method at 800 ℃. The cyclic oxidation at 800 ℃ and hot corrosion in molten 75% Na2SO4+25% NaC1 at 800 ℃ of the three different chromizing coatings were investigated. The effects of Al_2O_3 or Y_2O_3 on the cyclic oxidation and hot corrosion behavior of the chromizing coatings were discussed. Microstructure results show that the codeposited Al_2O_3 or Y_2O_3 particles significantly retard the grain growth of the chromizing coating, which increases the cyclic oxidation and hot corrosion resistance of the chromizing coatings, due to the more rapid formation of purer and denser chromia scnle展开更多
Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation...Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation performances of the produced Ni3Al coatings were comparatively investigated, with the emphasis on the effect of Y2O3. SEM/EDAX and TEM characterizations showed that the dispersion of Y2O3 refines the grains. Oxidation at 900 °C for 100 h showed that the addition of Y2O3 significantly improved the cyclic oxidation resistance of Ni3Al coating. The effect of Y2O3 on the microstructure and the oxidation of the Ni3Al coating were discussed in detail.展开更多
A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatm...A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.展开更多
To reveal the influence of substrate/coating interdiffusion on the cyclic oxidation property of a metallic coating, cyclic oxida- tion behavior of an EB-PVD CoCrAIY coating on directionally solidified Ni-based superal...To reveal the influence of substrate/coating interdiffusion on the cyclic oxidation property of a metallic coating, cyclic oxida- tion behavior of an EB-PVD CoCrAIY coating on directionally solidified Ni-based superalloy DZ125 at 1 050℃ is investigated. The 40 μm thick CoCrA1Y coating has a cyclic oxidation life of around 160 h, and the oxidation constant is 1.915× 10^-7 mg4.cm^-8.s-1. However, severe spallation of the oxides containing Co, Cr, Ni, Ta and Ti occurs with longer cyclic oxidation. The degradation in oxidation resistance for the coating is related to the depletion of A1 due to the oxide spallation and interdiffu- sion. Severe interdiffusion between the coating and underlying substrate occurs at 1 050 ℃. The composition of the substrate has an important effect on the thermal cycling lifetime of the coating. The influencing mechanism is discussed.展开更多
The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar at...The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.展开更多
Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occur...Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occurred between the coating and substrate,which caused the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)during aluminization,while their compositions and structures changed with oxidation.Al N interfacial layer formed at c BN/metallic matrix interface during aluminization,while it transformed into multilayer oxides during oxidation.Due to the microstructural evolution of these interfaces,the fracture behavior and bending toughness of the system changed greatly during three-point bending tests.Besides,the damage mechanisms were discussed.展开更多
The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces h...The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces has an effective role in the fatigue strength and ductility of the alloys.In the present work,the effect of prior cyclic oxidation on the high temperature low cycle fatigue(HTLCF)properties of nickel-based superalloy Rene®80 has been assessed in the uncoated state and in the Pt-aluminide(Pt-Al)coated condition at 930℃.To apply cyclic oxidation,simulation of engine thermal exposure was carried out by exposing coated and uncoated fatigue specimens in the burner rig(120 cycles at 1100℃).The cyclic oxidation procedure led to a changing in the coating microstructure from the dual-phase(ξ-PtAl_(2)+β-(Ni,Pt)Al)to single phase(β-(Ni,Pt)Al).Results of HTLCF tests showed an improvement in the HTLCF life around 11.5%in the unexposed coated specimen(pre-cyclic oxidation)as compared to unexposed bare specimen,while this rise for exposed coated specimen(post-cyclic oxidation)was only 5%.Although a mixed mode fracture morphology(ductile and brittle)was observed on the fracture surfaces of failed specimens,the wider regions of brittle fracture belonged to exposed coated/uncoated ones.展开更多
The 1100 degreesC cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implanta...The 1100 degreesC cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implantation. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and the substrate was exposed. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. Spallation mainly occurred between two layers of the scale on the 1 x 10(17)Y ions/cm(2)-implanted alloy. The results indicate the main reason that the adhesion of alumina scale was improved by yttrium addition lies in that yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface segregation. Another reason is that the growth mechanism of alumina scale was changed by yttrium addition.展开更多
The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃...The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃ for periods up to 2 h were conducted. Changes of the top surface morphology and microstructure were analyzed by scanning electron microscope (SEM), energy-dispersive spectra (EDS), transmission electron microscope (TEM) and X-ray diffraction technique (XRD), respectively. The weights were measured between the oxidation cycles to assess the oxidation of the specimens. The top surface microstructure after LP was characterized by highly tangled and dense dislocation arrangements and a high amount of twins. Protective oxidation layer was generated more quickly on the surface treated by LP. The average oxidation rate was about 50 % lower. A tiny homogeneous oxidation layer containing (Fe,Cr)2O3, NiCrO3 and Ni(A1,Cr)2O4 spinel was generated on the surface. The experimental results of cyclic oxidation tests show that specimens treated by LP have a better high temperature oxidation resistance, and the antistrip performance of the oxidation layer improves. Moreover, the effects of LP are strengthened with the increase of laser peening.展开更多
An investigation was carried out of the resistance to cyclic oxidation of the as-cast normal-grained Co-30Cr-5Al alloy substrate at 1000℃ in air together with its sputtered coating of microcrystallized CoCrAl alloy g...An investigation was carried out of the resistance to cyclic oxidation of the as-cast normal-grained Co-30Cr-5Al alloy substrate at 1000℃ in air together with its sputtered coating of microcrystallized CoCrAl alloy grains sized less than 0.5μm.Acoustie emissi on counts showed that the initially formed Al_2O_3 scale on the bare alloy substrate cracked and spalled severely off after only one or two cycles on cooling and then the worse protective layer of Cr_2O_3 and CoCr_2O_4 spinel occurred on surface.While such substrate coated with sputtered microcrystallized CoCrAl alloy film was not damaged under oxidation even through 100 cycles at 1000℃.In comparison with the normal-grained alloy,the microcrystallized al- loy,coating of similar constitution exhibite excellent resistance to oxide spalling on surface.展开更多
The influence of different relative density on the cyclic oxidation behaviors of MoSi2 at 1 273 K were studied. "Pesting" was not found in all MoSi2 materials after being oxidized for 480 h. All samples exhibited co...The influence of different relative density on the cyclic oxidation behaviors of MoSi2 at 1 273 K were studied. "Pesting" was not found in all MoSi2 materials after being oxidized for 480 h. All samples exhibited continuous mass gain during the oxidation process. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 8.15 mg·cm^-2 and 3.48 mg·cm^-2, respectively. The surface of the material with lower relative density formed a loose, porous and discontinuous oxidation scale, which accelerated oxygen diffusion and aggravated the oxidation process. However, a dense scale in the material with higher relative density is formed, which acts a diffusion barrier to the oxygen atoms penetrating into the matrix. The high temperature oxidation resistance of MoSi2 can be improved by increasing its relative density.展开更多
The halide-activated pack cementation method is utilized to codeposit aluminum and silicon on Mo substrate. Emphasis is placed on the microstructure and elevated-temperature oxidation resistance of coatings. The resul...The halide-activated pack cementation method is utilized to codeposit aluminum and silicon on Mo substrate. Emphasis is placed on the microstructure and elevated-temperature oxidation resistance of coatings. The results show that hexagonal Mo(Si, Al)2 as a main phase and a little amount of the lower disilicide Mo5Si3 was formed on Mo substrate through the halide-activated pack cementation method. The resultant Si-Al coating on Mo substrate exhibits excellent cyclic oxidation resistance. The excellent cyclic oxidation resistance of the coatings is attributed to the formation of alumina on the coatings during the oxidation.展开更多
The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation...The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.展开更多
The cyclic oxidation resistance of cast Ni-base superalloy K38G and its sputtered micro-grained film were studied between 950℃ and room temper- ature in air.The results show that the weight gain of micrograined films...The cyclic oxidation resistance of cast Ni-base superalloy K38G and its sputtered micro-grained film were studied between 950℃ and room temper- ature in air.The results show that the weight gain of micrograined films is much less than that of cast al- loy during cyclic oxidation,and the resistance of micro-grained fihns is even better than that of the aluminide coating on the same alloy.On the surface of cast alloy K38G,complex oxide scales of Cr_2O_3, TiO_2 and NiCr_2O_4 spinel formed and they began to spall alter about 30 cycles of test.However,on the micro-grained films,continuous and thin α-Al_2O_2 scale was formed and did not spall throughout the cyclic oxidation test.展开更多
The cyclic oxidation behaviors of Fe-28Al-5Cr-O. 1Zr (at%) and Fe-28Al5Cr-O.5Nb (at%) alloys have been investigated in air at high temperature. The results show that the distinctive whisker-like oxides were formed on ...The cyclic oxidation behaviors of Fe-28Al-5Cr-O. 1Zr (at%) and Fe-28Al5Cr-O.5Nb (at%) alloys have been investigated in air at high temperature. The results show that the distinctive whisker-like oxides were formed on the surface of Zr-containing Fe3 Al based alloy after 500 hrs. cyclic oxidation at 800℃ and 1000℃. The results also indicate that the addition of small amount of Zr to Fe3 Al based alloy can improve its adherence strength between the oxides and metal substrate and is beneficial to the oxidation resistance. However, for the Nb-containing Fe3 Al based alloy, porous convoluted oxides were formed after 350 hrs. cyclic oxidation at 1000℃, and this type of oxides didn't not contribute to the oxidation resistance.展开更多
This research presents a thorough assessment of the cyclic oxidation characteristics of Y-and Hf-doped NiCoCrAlTaRe superalloy bond coatings in a pure steam atmosphere,emphasizing the distinct influences of reactive e...This research presents a thorough assessment of the cyclic oxidation characteristics of Y-and Hf-doped NiCoCrAlTaRe superalloy bond coatings in a pure steam atmosphere,emphasizing the distinct influences of reactive elements (Y and Hf) and refractory elements (Ta and Re)on the growth mechanisms of thermally grown oxide(TGO).The findings indicate that,in contrast to air conditions,elevated levels of water vapor significantly diminish the oxidation resistance of the bond coatings,leading to considerable porosity defects in both the central and lower regions of the TGO.Furthermore,this environment hinders the development of the"peg"structure at the TGO/metal interface,thereby accelerating the premature delamination of the coating.Additionally,the presence of doped elements such as Hf,Ta,and Y leads to their segregation at the Al_(2)O_(3)grain boundaries within the TGO,creating grain boundary structures characterized by a high density of defects.This defective architecture promotes the inward diffusion of water molecules at elevatedtemperatures,causing hydrogen atoms generated from oxidation and reduction reactions at the TGO/metal interface to become entrapped within the Al_(2)O_(3)lattice at the base of the TGO,rather than escaping efficiently.Ultimately,this phenomenon contributes to the formation of internal porosity defects during the oxidation of TGO in a steam environment.展开更多
An electrodeposited Ni-Al nanocomposite having a nanocrystalline Ni matrix dispersing Al nanoparticles was annealed in vacuum at 500 ℃ for different time (3, 5 and 8 h, respectively). The results show that the anne...An electrodeposited Ni-Al nanocomposite having a nanocrystalline Ni matrix dispersing Al nanoparticles was annealed in vacuum at 500 ℃ for different time (3, 5 and 8 h, respectively). The results show that the annealing treatment leads to the reaction of Ni and Al to form intermetallics and the coarsened Ni grains that are doped with a certain amount of Al atoms diffused from the nanoparticles. Cyclic oxidation in air at 1 000 ℃ indicates that the scale spallation resistance of the annealed Ni-Al nanocomposite increases with the increase of annealing time, due to prevention of the composite intergranular cracking during the cycling, reduction of numerous surface NiO nodules formed on the scale spalled area and prevention of internal oxidation.展开更多
Cyclic oxidation test is a fundamental method to assess lifetime of materials in high temperature environment.Cycle length or cyclic frequency is one important variable in cyclic oxidation testing.In present work,cycl...Cyclic oxidation test is a fundamental method to assess lifetime of materials in high temperature environment.Cycle length or cyclic frequency is one important variable in cyclic oxidation testing.In present work,cyclic oxidation tests were performed on cast K38 alloys with 0 wt.%,0.1 wt.%,and 0.5 wt.% yttrium additions at 1 273 K respectively.Two cyclic frequencies were used to investigate the influence of cycle length (1 h vs.20 h) on the high temperature oxidation behavior of superalloy.The results showed that the degradation of cast K38 alloy critically was dependent on the cyclic frequency.The yttrium addition was beneficial to reducing scale-growth rate,improving the scale adhesion and stress releasing,thereby increased the spallation resistance.It could be drawn that the effect of cyclic frequency was highly dependent on the scale adherence to the substrate.展开更多
Refurbishment of thermal barrier coating(TBC)has become a valuable technique to prolong the service life of high-temperature components.This study investigates the effect of the refurbishment process(coating removal a...Refurbishment of thermal barrier coating(TBC)has become a valuable technique to prolong the service life of high-temperature components.This study investigates the effect of the refurbishment process(coating removal and recoating)on the microstructure evolution and physical properties of TBC,including oxidation characteristics,element diffusion behavior,and crack failure mechanisms.The results showed that a certain amount of interdiffusion zone(IDZ)with Cr-rich would be retained in DD6 superalloy substrate after coating removal.The microstructure of the refurbished specimens showed equiaxedβ-NiAl phases,while the ordinary specimens have elongated grain shapes with a high aspect ratio.Moreover,mixed oxides in the refurbished TBC specimens were earlier observed during cyclic oxidation,with a greater thickness compared to ordinary TBC,due to the influence of BC layer phase sizes.The growth mechanism of thermally grown oxide(TGO-Al_(2)O_(3)layer)in the refurbished TBC specimens was also different,resulting from the different mechanisms of mixed oxides growth.Furthermore,under cyclic oxidation with water quenching at 1100℃,the cracks in the refurbished specimen tend to occur in the mixed oxides layer,while the cracks in the ordinary specimen occur in the top coat(TC)layer,attributing to the earlier and thicker mixed oxides layer formed in refurbished specimens.展开更多
Multilayered Pt/Ru modified aluminide coating for thermal barrier coating (TBC) systems has been investi- gated. 2μm Pt+2 μm Ru+2 μm Pt was first deposited on nickel-base superalloy DZ125 by electrodeposition, ...Multilayered Pt/Ru modified aluminide coating for thermal barrier coating (TBC) systems has been investi- gated. 2μm Pt+2 μm Ru+2 μm Pt was first deposited on nickel-base superalloy DZ125 by electrodeposition, and then the coating was treated by annealing and a conventional pack-cementation aluminizing process. The cyclic oxidation tests were carried out at 1423 K in air. It was found that the thermal cyclic oxidation resistance of Pt/Ru-modified aluminide coating was comparable to that of Pt-modified aluminide coating, which was much better than simply aluminized DZ125. The addition of Ru to Pt-modified aluminide coating increased the resistance to rumpling. The microstructures and phase constitutions of the coating before and after oxidation were investigated.展开更多
基金Project(11531319)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘Chromium coatings with and without Al_2O_3 or Y_2O_3 particles were prepared by chromizing the as-deposited Ni-film with and without Al_2O_3 or Y_2O_3 particles using a conventional pack-cementation method at 800 ℃. The cyclic oxidation at 800 ℃ and hot corrosion in molten 75% Na2SO4+25% NaC1 at 800 ℃ of the three different chromizing coatings were investigated. The effects of Al_2O_3 or Y_2O_3 on the cyclic oxidation and hot corrosion behavior of the chromizing coatings were discussed. Microstructure results show that the codeposited Al_2O_3 or Y_2O_3 particles significantly retard the grain growth of the chromizing coating, which increases the cyclic oxidation and hot corrosion resistance of the chromizing coatings, due to the more rapid formation of purer and denser chromia scnle
基金Project (11531319) supported by Scientific Research Fund of Heilongjiang Provincial Education Department, China
文摘Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation performances of the produced Ni3Al coatings were comparatively investigated, with the emphasis on the effect of Y2O3. SEM/EDAX and TEM characterizations showed that the dispersion of Y2O3 refines the grains. Oxidation at 900 °C for 100 h showed that the addition of Y2O3 significantly improved the cyclic oxidation resistance of Ni3Al coating. The effect of Y2O3 on the microstructure and the oxidation of the Ni3Al coating were discussed in detail.
基金the Key-Area Research and Development Program of Guangdong Province(2019B010936001)financially supported by the National Natural Science Foundation of China(Grant Nos.51671202 and 51301184)。
文摘A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.
基金National Natural Science Foundation of China (50731001, 51071013, 51001032)National Basic Research Program of China (2010CB631200)
文摘To reveal the influence of substrate/coating interdiffusion on the cyclic oxidation property of a metallic coating, cyclic oxida- tion behavior of an EB-PVD CoCrAIY coating on directionally solidified Ni-based superalloy DZ125 at 1 050℃ is investigated. The 40 μm thick CoCrA1Y coating has a cyclic oxidation life of around 160 h, and the oxidation constant is 1.915× 10^-7 mg4.cm^-8.s-1. However, severe spallation of the oxides containing Co, Cr, Ni, Ta and Ti occurs with longer cyclic oxidation. The degradation in oxidation resistance for the coating is related to the depletion of A1 due to the oxide spallation and interdiffu- sion. Severe interdiffusion between the coating and underlying substrate occurs at 1 050 ℃. The composition of the substrate has an important effect on the thermal cycling lifetime of the coating. The influencing mechanism is discussed.
基金Project(2006-8) supported by the Huadian International Corporation Limited
文摘The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.
基金supported by National Science and Technology Major Project(2017-VII-0012-0108)。
文摘Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occurred between the coating and substrate,which caused the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)during aluminization,while their compositions and structures changed with oxidation.Al N interfacial layer formed at c BN/metallic matrix interface during aluminization,while it transformed into multilayer oxides during oxidation.Due to the microstructural evolution of these interfaces,the fracture behavior and bending toughness of the system changed greatly during three-point bending tests.Besides,the damage mechanisms were discussed.
文摘The prediction of fatigue life of metallic alloys is justly accepted as one of the most important phenomena in the field of metallurgical and mechanical engineering.At elevated temperatures,oxidation of the surfaces has an effective role in the fatigue strength and ductility of the alloys.In the present work,the effect of prior cyclic oxidation on the high temperature low cycle fatigue(HTLCF)properties of nickel-based superalloy Rene®80 has been assessed in the uncoated state and in the Pt-aluminide(Pt-Al)coated condition at 930℃.To apply cyclic oxidation,simulation of engine thermal exposure was carried out by exposing coated and uncoated fatigue specimens in the burner rig(120 cycles at 1100℃).The cyclic oxidation procedure led to a changing in the coating microstructure from the dual-phase(ξ-PtAl_(2)+β-(Ni,Pt)Al)to single phase(β-(Ni,Pt)Al).Results of HTLCF tests showed an improvement in the HTLCF life around 11.5%in the unexposed coated specimen(pre-cyclic oxidation)as compared to unexposed bare specimen,while this rise for exposed coated specimen(post-cyclic oxidation)was only 5%.Although a mixed mode fracture morphology(ductile and brittle)was observed on the fracture surfaces of failed specimens,the wider regions of brittle fracture belonged to exposed coated/uncoated ones.
文摘The 1100 degreesC cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implantation. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and the substrate was exposed. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. Spallation mainly occurred between two layers of the scale on the 1 x 10(17)Y ions/cm(2)-implanted alloy. The results indicate the main reason that the adhesion of alumina scale was improved by yttrium addition lies in that yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface segregation. Another reason is that the growth mechanism of alumina scale was changed by yttrium addition.
基金Funded by the National Natural Science Foundation of China(No.51175234)the Heights Talent Support Programs in Six Industrial Fields in Jiangsu Province(No.2011-JXQC069)
文摘The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃ for periods up to 2 h were conducted. Changes of the top surface morphology and microstructure were analyzed by scanning electron microscope (SEM), energy-dispersive spectra (EDS), transmission electron microscope (TEM) and X-ray diffraction technique (XRD), respectively. The weights were measured between the oxidation cycles to assess the oxidation of the specimens. The top surface microstructure after LP was characterized by highly tangled and dense dislocation arrangements and a high amount of twins. Protective oxidation layer was generated more quickly on the surface treated by LP. The average oxidation rate was about 50 % lower. A tiny homogeneous oxidation layer containing (Fe,Cr)2O3, NiCrO3 and Ni(A1,Cr)2O4 spinel was generated on the surface. The experimental results of cyclic oxidation tests show that specimens treated by LP have a better high temperature oxidation resistance, and the antistrip performance of the oxidation layer improves. Moreover, the effects of LP are strengthened with the increase of laser peening.
文摘An investigation was carried out of the resistance to cyclic oxidation of the as-cast normal-grained Co-30Cr-5Al alloy substrate at 1000℃ in air together with its sputtered coating of microcrystallized CoCrAl alloy grains sized less than 0.5μm.Acoustie emissi on counts showed that the initially formed Al_2O_3 scale on the bare alloy substrate cracked and spalled severely off after only one or two cycles on cooling and then the worse protective layer of Cr_2O_3 and CoCr_2O_4 spinel occurred on surface.While such substrate coated with sputtered microcrystallized CoCrAl alloy film was not damaged under oxidation even through 100 cycles at 1000℃.In comparison with the normal-grained alloy,the microcrystallized al- loy,coating of similar constitution exhibite excellent resistance to oxide spalling on surface.
基金the National Natural Science Foundation of China(No. 0405041)
文摘The influence of different relative density on the cyclic oxidation behaviors of MoSi2 at 1 273 K were studied. "Pesting" was not found in all MoSi2 materials after being oxidized for 480 h. All samples exhibited continuous mass gain during the oxidation process. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 8.15 mg·cm^-2 and 3.48 mg·cm^-2, respectively. The surface of the material with lower relative density formed a loose, porous and discontinuous oxidation scale, which accelerated oxygen diffusion and aggravated the oxidation process. However, a dense scale in the material with higher relative density is formed, which acts a diffusion barrier to the oxygen atoms penetrating into the matrix. The high temperature oxidation resistance of MoSi2 can be improved by increasing its relative density.
文摘The halide-activated pack cementation method is utilized to codeposit aluminum and silicon on Mo substrate. Emphasis is placed on the microstructure and elevated-temperature oxidation resistance of coatings. The results show that hexagonal Mo(Si, Al)2 as a main phase and a little amount of the lower disilicide Mo5Si3 was formed on Mo substrate through the halide-activated pack cementation method. The resultant Si-Al coating on Mo substrate exhibits excellent cyclic oxidation resistance. The excellent cyclic oxidation resistance of the coatings is attributed to the formation of alumina on the coatings during the oxidation.
基金Projects supported by The 2nd Stage of Brain Korea and Korea Research Foundation
文摘The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.
基金This work was supported by the National Nat- ural Science Foundation of China
文摘The cyclic oxidation resistance of cast Ni-base superalloy K38G and its sputtered micro-grained film were studied between 950℃ and room temper- ature in air.The results show that the weight gain of micrograined films is much less than that of cast al- loy during cyclic oxidation,and the resistance of micro-grained fihns is even better than that of the aluminide coating on the same alloy.On the surface of cast alloy K38G,complex oxide scales of Cr_2O_3, TiO_2 and NiCr_2O_4 spinel formed and they began to spall alter about 30 cycles of test.However,on the micro-grained films,continuous and thin α-Al_2O_2 scale was formed and did not spall throughout the cyclic oxidation test.
文摘The cyclic oxidation behaviors of Fe-28Al-5Cr-O. 1Zr (at%) and Fe-28Al5Cr-O.5Nb (at%) alloys have been investigated in air at high temperature. The results show that the distinctive whisker-like oxides were formed on the surface of Zr-containing Fe3 Al based alloy after 500 hrs. cyclic oxidation at 800℃ and 1000℃. The results also indicate that the addition of small amount of Zr to Fe3 Al based alloy can improve its adherence strength between the oxides and metal substrate and is beneficial to the oxidation resistance. However, for the Nb-containing Fe3 Al based alloy, porous convoluted oxides were formed after 350 hrs. cyclic oxidation at 1000℃, and this type of oxides didn't not contribute to the oxidation resistance.
基金financially supported by the National Key R&D Program of China(No.2023YFB3711200)the National Natural Science Foundation of China(No.U21A2044)the Science Center for Gas Turbine Project(No.P2022-B-IV-008-001)
文摘This research presents a thorough assessment of the cyclic oxidation characteristics of Y-and Hf-doped NiCoCrAlTaRe superalloy bond coatings in a pure steam atmosphere,emphasizing the distinct influences of reactive elements (Y and Hf) and refractory elements (Ta and Re)on the growth mechanisms of thermally grown oxide(TGO).The findings indicate that,in contrast to air conditions,elevated levels of water vapor significantly diminish the oxidation resistance of the bond coatings,leading to considerable porosity defects in both the central and lower regions of the TGO.Furthermore,this environment hinders the development of the"peg"structure at the TGO/metal interface,thereby accelerating the premature delamination of the coating.Additionally,the presence of doped elements such as Hf,Ta,and Y leads to their segregation at the Al_(2)O_(3)grain boundaries within the TGO,creating grain boundary structures characterized by a high density of defects.This defective architecture promotes the inward diffusion of water molecules at elevatedtemperatures,causing hydrogen atoms generated from oxidation and reduction reactions at the TGO/metal interface to become entrapped within the Al_(2)O_(3)lattice at the base of the TGO,rather than escaping efficiently.Ultimately,this phenomenon contributes to the formation of internal porosity defects during the oxidation of TGO in a steam environment.
基金Project (11531319) supported by Scientific Research Fund of Heilongjiang Provincial Education Department, ChinaProject (06-13) supported by the Scientific Research Startup Foundation of Heilongjiang Institute of Science and Technology, China
文摘An electrodeposited Ni-Al nanocomposite having a nanocrystalline Ni matrix dispersing Al nanoparticles was annealed in vacuum at 500 ℃ for different time (3, 5 and 8 h, respectively). The results show that the annealing treatment leads to the reaction of Ni and Al to form intermetallics and the coarsened Ni grains that are doped with a certain amount of Al atoms diffused from the nanoparticles. Cyclic oxidation in air at 1 000 ℃ indicates that the scale spallation resistance of the annealed Ni-Al nanocomposite increases with the increase of annealing time, due to prevention of the composite intergranular cracking during the cycling, reduction of numerous surface NiO nodules formed on the scale spalled area and prevention of internal oxidation.
基金Project supported by the Science and Technology Funds from Liaoning Education Department (2008564)the National Natural Science Foundation of China (50771100)
文摘Cyclic oxidation test is a fundamental method to assess lifetime of materials in high temperature environment.Cycle length or cyclic frequency is one important variable in cyclic oxidation testing.In present work,cyclic oxidation tests were performed on cast K38 alloys with 0 wt.%,0.1 wt.%,and 0.5 wt.% yttrium additions at 1 273 K respectively.Two cyclic frequencies were used to investigate the influence of cycle length (1 h vs.20 h) on the high temperature oxidation behavior of superalloy.The results showed that the degradation of cast K38 alloy critically was dependent on the cyclic frequency.The yttrium addition was beneficial to reducing scale-growth rate,improving the scale adhesion and stress releasing,thereby increased the spallation resistance.It could be drawn that the effect of cyclic frequency was highly dependent on the scale adherence to the substrate.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)National Natural Science Foundation of China(12102320)China Postdoctoral Science Foundation(2021M692571).
文摘Refurbishment of thermal barrier coating(TBC)has become a valuable technique to prolong the service life of high-temperature components.This study investigates the effect of the refurbishment process(coating removal and recoating)on the microstructure evolution and physical properties of TBC,including oxidation characteristics,element diffusion behavior,and crack failure mechanisms.The results showed that a certain amount of interdiffusion zone(IDZ)with Cr-rich would be retained in DD6 superalloy substrate after coating removal.The microstructure of the refurbished specimens showed equiaxedβ-NiAl phases,while the ordinary specimens have elongated grain shapes with a high aspect ratio.Moreover,mixed oxides in the refurbished TBC specimens were earlier observed during cyclic oxidation,with a greater thickness compared to ordinary TBC,due to the influence of BC layer phase sizes.The growth mechanism of thermally grown oxide(TGO-Al_(2)O_(3)layer)in the refurbished TBC specimens was also different,resulting from the different mechanisms of mixed oxides growth.Furthermore,under cyclic oxidation with water quenching at 1100℃,the cracks in the refurbished specimen tend to occur in the mixed oxides layer,while the cracks in the ordinary specimen occur in the top coat(TC)layer,attributing to the earlier and thicker mixed oxides layer formed in refurbished specimens.
基金sponsored by the Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC,Nos.50731001 and 50971013)the National Institute for Materials Science (NIMS) internship program
文摘Multilayered Pt/Ru modified aluminide coating for thermal barrier coating (TBC) systems has been investi- gated. 2μm Pt+2 μm Ru+2 μm Pt was first deposited on nickel-base superalloy DZ125 by electrodeposition, and then the coating was treated by annealing and a conventional pack-cementation aluminizing process. The cyclic oxidation tests were carried out at 1423 K in air. It was found that the thermal cyclic oxidation resistance of Pt/Ru-modified aluminide coating was comparable to that of Pt-modified aluminide coating, which was much better than simply aluminized DZ125. The addition of Ru to Pt-modified aluminide coating increased the resistance to rumpling. The microstructures and phase constitutions of the coating before and after oxidation were investigated.