Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame w...Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame with circle, square and hexagon shape tolerance area using adaptive solutions is presented. The theoretical considerations are supported by simulation results.展开更多
This paper deals with the vector control, including both the direct vector control(DVC) and the indirect vector control(Id VC),of induction motors. It is well known that the estimation of rotor flux plays a fundamenta...This paper deals with the vector control, including both the direct vector control(DVC) and the indirect vector control(Id VC),of induction motors. It is well known that the estimation of rotor flux plays a fundamental role in the DVC and the estimation of rotor resistance is vital in the slip compensation of the Id VC. In these estimations, the precision is significantly affected by the motor resistances. Therefore, online estimation of motor resistances is indispensable in practice.For a fast estimation of motor resistances, it is necessary to slow down the convergence rate of the current estimate. On the other hand, for a fast estimation of the rotor flux, it is necessary to speed up its convergence rate. It is very difficult to realize such a trade-off in convergence rates in a full order observer.In this paper, we propose to decouple the current observer from the flux observer so as to realize independent convergence rates. Then, the resistance estimation algorithm is applied to both DVC and Id VC. In particular, in the application to Id VC the flux observer needs not be used, which leads to a simpler structure. Meanwhile, independent convergence rates of current observer and flux observer yield an improved performance. A superior performance in the torque and flux responses in both cases is verified by numerous simulations.展开更多
为了减少模型预测控制中因死区时间引起的电压和定子电流的误差,在永磁同步电机(permanent magnet synchronous motor,PMSM)模型预测电流控制(model predictive current control,MPCC)基础上采用了一种基于死区电压矢量的优化MPCC方法(d...为了减少模型预测控制中因死区时间引起的电压和定子电流的误差,在永磁同步电机(permanent magnet synchronous motor,PMSM)模型预测电流控制(model predictive current control,MPCC)基础上采用了一种基于死区电压矢量的优化MPCC方法(dead-time voltage vector based MPCC,DTVV-MPCC)。首先介绍了死区时间对MPCC的影响,分析了MPCC中存在的死区电压矢量(dead-time voltage vector,DTVV)的形成过程。其次区分了MPCC性能的有利DTVV和非有利DTVV,并分析了有利DTVV的优势。最后优化了死区作用时间。仿真结果表明该控制方法下的电流稳态控制性能要优于传统的MPCC方法。展开更多
为了抑制轴向磁场磁通切换永磁(axial field flux-switching permanent magnet,AFFSPM)电动机齿槽转矩引起的转矩脉动,提出一种基于自适应扩展卡尔曼滤波器的齿槽转矩抑制方法.该方法根据齿槽转矩分析结果,以及AFFSPM电动机数学模型和...为了抑制轴向磁场磁通切换永磁(axial field flux-switching permanent magnet,AFFSPM)电动机齿槽转矩引起的转矩脉动,提出一种基于自适应扩展卡尔曼滤波器的齿槽转矩抑制方法.该方法根据齿槽转矩分析结果,以及AFFSPM电动机数学模型和损耗模型,将齿槽转矩引起的系统转矩脉动作为扩展状态变量,与电流环的反馈电流一起构造系统扩张状态空间方程.在状态估计过程中引入了遗忘因子,提高观测精度和速度.与基于谐波电流注入法抑制齿槽转矩的控制方法进行了控制性能和突变工况对比.结果表明:所提出控制方法在低速时转矩脉动降低了43.5%,电损耗降低了14.8%,能更有效抑制齿槽转矩脉动和提高系统效率.展开更多
In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence i...In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.展开更多
文摘Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame with circle, square and hexagon shape tolerance area using adaptive solutions is presented. The theoretical considerations are supported by simulation results.
文摘This paper deals with the vector control, including both the direct vector control(DVC) and the indirect vector control(Id VC),of induction motors. It is well known that the estimation of rotor flux plays a fundamental role in the DVC and the estimation of rotor resistance is vital in the slip compensation of the Id VC. In these estimations, the precision is significantly affected by the motor resistances. Therefore, online estimation of motor resistances is indispensable in practice.For a fast estimation of motor resistances, it is necessary to slow down the convergence rate of the current estimate. On the other hand, for a fast estimation of the rotor flux, it is necessary to speed up its convergence rate. It is very difficult to realize such a trade-off in convergence rates in a full order observer.In this paper, we propose to decouple the current observer from the flux observer so as to realize independent convergence rates. Then, the resistance estimation algorithm is applied to both DVC and Id VC. In particular, in the application to Id VC the flux observer needs not be used, which leads to a simpler structure. Meanwhile, independent convergence rates of current observer and flux observer yield an improved performance. A superior performance in the torque and flux responses in both cases is verified by numerous simulations.
文摘为了减少模型预测控制中因死区时间引起的电压和定子电流的误差,在永磁同步电机(permanent magnet synchronous motor,PMSM)模型预测电流控制(model predictive current control,MPCC)基础上采用了一种基于死区电压矢量的优化MPCC方法(dead-time voltage vector based MPCC,DTVV-MPCC)。首先介绍了死区时间对MPCC的影响,分析了MPCC中存在的死区电压矢量(dead-time voltage vector,DTVV)的形成过程。其次区分了MPCC性能的有利DTVV和非有利DTVV,并分析了有利DTVV的优势。最后优化了死区作用时间。仿真结果表明该控制方法下的电流稳态控制性能要优于传统的MPCC方法。
文摘为了抑制轴向磁场磁通切换永磁(axial field flux-switching permanent magnet,AFFSPM)电动机齿槽转矩引起的转矩脉动,提出一种基于自适应扩展卡尔曼滤波器的齿槽转矩抑制方法.该方法根据齿槽转矩分析结果,以及AFFSPM电动机数学模型和损耗模型,将齿槽转矩引起的系统转矩脉动作为扩展状态变量,与电流环的反馈电流一起构造系统扩张状态空间方程.在状态估计过程中引入了遗忘因子,提高观测精度和速度.与基于谐波电流注入法抑制齿槽转矩的控制方法进行了控制性能和突变工况对比.结果表明:所提出控制方法在低速时转矩脉动降低了43.5%,电损耗降低了14.8%,能更有效抑制齿槽转矩脉动和提高系统效率.
文摘In this paper, a hybrid control strategy for a matrix converter fed wind energy conversion system is presented. Since the wind speed may vary, output parameters like power, frequency and voltage may fluctuate. Hence it is necessary to design a system that regulates output parameters, such as voltage and frequency, and thereby provides a constant voltage and frequency output from the wind energy conversion system. Matrix converter is used in the proposed solution as the main power conditioner as a more efficient alternative when compared to traditional back-back converter structure. To control the output voltage, a vector modulation based refined control structure is used. A power tracker is included to maximize the mechanical output power of the turbine. Over current protection and clamp circuit input protection have been introduced to protect the system from over current. It reduces the spikes generated at the output of the converter. The designed system is capable of supplying an output voltage of constant frequency and amplitude within the expected ranges of input during the operation. The matrix converter control using direct modulation method, modified Venturini modulation method and vector modulation method was simulated, the results were compared and it was inferred that vector modulation method was superior to the other two methods. With the proposed technique, voltage transfer ratio and harmonic profile have been improved compared to the other two modulation techniques. The behaviour of the system is corroborated by MATLAB Simulink, and hardware is realized using an FPGA controller. Experimental results are found to be matching with the simulation results.