To overcome reliance on molds and the difficulty of fabricating complex geometries with traditional C/C composites,direct ink writing(DIW)with UV/heat dual curing was employed to produce high-performance C/C composite...To overcome reliance on molds and the difficulty of fabricating complex geometries with traditional C/C composites,direct ink writing(DIW)with UV/heat dual curing was employed to produce high-performance C/C composites.The rheological properties of the composite inks were systematically analyzed to assess the effects of phenolic resin(PR)and carbon fiber(CF)content.Results show pronounced shear-thinning behavior and strong thixotropy-both essential for stable DIW.Additionally,UV/heat curing behavior was characterized to provide theoretical insights for optimizing curing parameters.Notably,CF addition is found to significantly attenuate UV light penetration compared to pure PR.As CF content increases,the critical UV irradiation energy rises sharply from 68.47 to 911.19 mJ/cm^(2),necessitating precise adjustments to curing parameters.Preforms were pyrolyzed in a carbon tube furnace to examine pore-formation characteristics,and chemical vapor infiltration(CVI)was applied to filling the resulting pores,yielding C/C composites with a flexural strength of 115.19 MPa.展开更多
[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[...[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[RhCl(Ph3P)3]as the catalyst.[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane is a novel kind of silicon-containing epoxide.The factors affecting the reaction yield,such as catalyst use,reaction time and reaction temperature,were investigated,and the synthesized product was characterized and analyzed by FT-IR and 1H-NMR.A series of amine-curing resins were prepared with[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane,bisphenol A epoxy resin(E-51)and modified amine(593 amine).The mechanical properties of cured splines with the different proportions of amine-curing resins were tested.When the content of 593 amine was 20%,the content of E-51 was 75%and the amount of[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was 5%,the mechanical properties of the cured splines were the best with the tensile strength being 23.3 MPa,the elongation at break being 7.8%,and the Young's modulus being 421.3 MPa.展开更多
To address the negative impact of an internal curing agent on strength while preserving its ability to resist autogenous shrinkage,we investigated the incorporation of triethanolamine and triisopropanolamine as early-...To address the negative impact of an internal curing agent on strength while preserving its ability to resist autogenous shrinkage,we investigated the incorporation of triethanolamine and triisopropanolamine as early-strength components.These additives were combined with an internal curing agent to prepare a compound early-strength internal curing agent so as to investigate how compound early-strength internal curing agents affect the mechanical characteristics and volume stability of mortar.This was assessed using a battery of tests,including strength,autogenous shrinkage,internal relative humidity,mercury intrusion porosimetry,X-ray powder diffraction,and scanning electron microscopy.These results indicate that the compound early-strength internal curing agent effectively maintains the volume stability of the mortar without compromising its early mechanical properties.The compressive strength ratios of the mortar mixed with the compound early-strength internal curing agent were 109.45% at 3 days and 119% at 7 days,indicating significant improvement compared with the internal curing agent.Furthermore,the 7-day autogenous shrinkage rate of the mortar was-56.78μm/m.The proportion of hazardous-grade pores larger than 100 nm was reduced to 3.54%,and the pore distribution was uniform.This study introduces innovative ideas and methods for mitigating the adverse effects of internal curing agents on the early strength of mortar.展开更多
Molybdenum tailings are the solid waste left from ore processing,which damages soil and water resources.To address that,molybdenum tailings(MTs)powder obtained from molybdenum tailings sands was processed as an admixt...Molybdenum tailings are the solid waste left from ore processing,which damages soil and water resources.To address that,molybdenum tailings(MTs)powder obtained from molybdenum tailings sands was processed as an admixture.Compared with moisture-cured conditions,the influence of MTs on the steam-cured mortar’s mechanical properties,surface and internal pore characteristics,and microscopic morphology was investigated.The results show that steam-cured mortar containing appropriate MTs can still have high early strength.When the content of MTs doesn’t exceed 15%,the mechanical strength of mortar steam-cured for 3 d can reach 85%of that of corresponding mortar moisture-cured for 28 d,and that of mortar steam-cured for 28 d isn’t lower than 90%of that of pure cement mortar.The proportion of harmful pores(HFP)and more harmful pores(MHFP)and most probable pore diameters(MPD)on the mortar surface containing MTs steam-cured for 28 d are significantly decreased.When MTs’content is 15%,the proportion of HFP and MHFP on the surface of paste is decreased by 71.4%and 72.2%,respectively,with MPS decreasing from 12.7 nm to 10.8 nm.SEM analysis shows that the surfaces of steam-cured paste containing 15%MTs have more hydration products and dense microstructures.The effect of pozzolanic and dense filling of MTs effectively refines the pore structure,reducing the large pore-size pores.展开更多
The size effects were experimentally investigated and the underlying mechanism was analyzed.The results reveal that,as the specimen size increases,the interconnectivity of macropores slightly decreases.This in turn co...The size effects were experimentally investigated and the underlying mechanism was analyzed.The results reveal that,as the specimen size increases,the interconnectivity of macropores slightly decreases.This in turn constrains the diffusion of CO_(2) and moisture in the specimens,resulting in an increase in the discrepancy between the internal and external carbonation degrees.An increase in cement paste thickness simultaneously decreases the quantity,average size,and interconnectivity of macropores,lowering the diffusion efficacy of CO_(2) and moisture and exacerbating the overall heterogeneity in carbonation.Moreover,the gradual blockage of macropores leads to the emergence of localized ‘occluded zones’ with much lower carbonation degree.The reduction in aggregate size significantly alters the average diameter and connectivity of macropores,leading to notable change to overall non-uniformity.This study provides insight into improving the CO_(2) curing effect of pervious concrete products and developing uniform curing methods.展开更多
Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by u...Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.展开更多
[ Objective] This study aimed to investigate the curing performance of polyurethane curing barn and reduce the cost of tobacco leaf flue-curing. [ Meth- odl The temperature control effect, curing effect and curing cos...[ Objective] This study aimed to investigate the curing performance of polyurethane curing barn and reduce the cost of tobacco leaf flue-curing. [ Meth- odl The temperature control effect, curing effect and curing cost of polyurethane curing barn and traditional bulk curing barn were analyzed and compared. [ Re- suit] The results showed that there were no significant differences in curing performance between two types of curing barns. Horizontal temperature differences in- creased slightly as the temperature rose. Specifically, horizontal temperature differences between each layer ranged from 0.2 ~C to 0.5 ~. Both two types of curing barns exhibited uniform air distribution. Polyurethane curing barn exhibited stable vertical temperature differences. Both two types of curing barns presented good curing effects with slight differences. Polyurethane curing barn exhibited higher economic benefits, lower coal cost, lower electricity cost, lower labor cost and lon- ger service life than traditional bulk curing barn, but its construction cost was higher. [ Conclusion] Polyurethane curing barn exhibits better curing performance with ~ood application prospects.展开更多
[Objective]The aim was to explore effects of curing technique parameters on chemical components and aromatic material accumulation to formulate a suitable curing technique and for and to achieve tobacco scalding, dryi...[Objective]The aim was to explore effects of curing technique parameters on chemical components and aromatic material accumulation to formulate a suitable curing technique and for and to achieve tobacco scalding, drying and giving aromat- ic flavor. [Method] With tobacco variety KRK 26 as test materials, the test involved parameters of three curing-techniques in down, middle and upper parts of flue-cured tobaccos in an oven to measure chemical components and aromatic substances in tobaccos. [Result] The effects of curing techniques on total sugar and reducing sug- ar differed upon temperature and humidity. The contents of chemical components, such as total alkaloid, total N and the ratio of sugar/ alkali by moderate temperature and high humidity technique were of significant differences with those by moderate temperature and moderate humidity technique and with low temperature and low hu- midity technique; the chemical components by moderate temperature and moderate humidity were of insignificant differences with the treatment by low temperature and low humidity technique. Total amount of aroma components by different curing tech- niques from high to low was the treatment by low temperature and low humidity technique (461.72 μg/g), the treatment by moderate temperature and moderate hu- midity technique (450.06μg/g) and the treatment by moderate temperature and high humidity technique (385.12μg/g), suggesting the content of aromatic substances is high at low temperature and low humidity. [Conclusion] Moderate temperature and high humidity curing technique has significant effects on total alkaloid, total N and the ratio of sugar/ alkali of tobaccos and different curing techniques also affect the total amount of aromatic substances of flue-cured tobaccos.展开更多
Curing of Bacillus subtilis plasmid using sodium dodecyl sulfate (SDS)was studied in order to obtain a host strain. An overnight culture of Bacillus subtilis 24/pMX45 was used to inoculate fresh LB containing SDS (0-0...Curing of Bacillus subtilis plasmid using sodium dodecyl sulfate (SDS)was studied in order to obtain a host strain. An overnight culture of Bacillus subtilis 24/pMX45 was used to inoculate fresh LB containing SDS (0-0.008%). No growth of 24/pMX45 was observed when LB contained an SDS concentration of 0.006% or greater, and the sublethal concentration (w/v) of SDS was 0.005% with a killing rate of 99%. Samples were diluted and plated on LB agar, individual colonies were randomly picked to a selective agar medium by tooth to screen for loss of plasmid-encoded erythomycin resistance. CsCl-EtBr gradient centrifugation and plasmid DNA profile demonstrated that plasmid-cured derivative A7 has completely lost its plasmid. A7 had a shorter lag, and its cell concentration was consistently higher than that of the 24/pMX45. Elimination of the plasmid was first observed after 24/pMX45 had been treated with SDS for 8 h. The percent elimination then continued to increase until about 22 h, after which the fraction of cured cell in the population remained constant. Plasmid cured cell numbers were measured in a separate control culture of 24/pMX45 untreated by SDS. No spontaneous loss of pMX45 was observed after 24/pMX45 were incubated for 24 h and 48 h with shaking at 37 ℃.These results suggested that SDS can be used as curing agent to eliminate the plasmid of Bacillus subtilis.展开更多
[Objective] The aim was to compare effects of three curing techniques (Chinese tobacco curing-method for improving tobacco quality and fragrance, Chi-nese (three-phase) tobacco curing technique, and Zimbabwe tobac...[Objective] The aim was to compare effects of three curing techniques (Chinese tobacco curing-method for improving tobacco quality and fragrance, Chi-nese (three-phase) tobacco curing technique, and Zimbabwe tobacco curing tech-nique) on quality of tobacco and to select optimal curing method. [Method] In Peng-shui county in Chongqing, tobacco variety K326 was chosen as test materials to conduct tobacco curing tests as per three techniques to analyze key components of raw tobacco, grade quality and evaluation quality. [Result] The content of starch in tobacco was reduced by Chinese tobacco curing-method for improving tobacco quality and fragrance, and the ratio of middle and high quality grade tobaccos improved by 1.8%-7.95%; average price increased by 1.64-3.21 yuan/kg; evaluation grade grew by 1.5-4.4. The technique is proved in enhancing tobacco fragrance quality and quantity as wel as improving and adjusting fragrance, taste and flavor. [Conclusion] Chinese (three-phase) tobacco curing technique improves tobacco quality and provides references for production demonstration areas of tobacco curing.展开更多
[Objective]This study aimed to optimize the conditions for curing tobacco leaf, so as to improve its flavor and quality. [Method] Leaves of Yuanyan 87 were col ected and cured by three different techniques (moderate-...[Objective]This study aimed to optimize the conditions for curing tobacco leaf, so as to improve its flavor and quality. [Method] Leaves of Yuanyan 87 were col ected and cured by three different techniques (moderate-intensity conditions throughout the curing course; high-intensity conditions at leaf yel owing and wilting stages, moderate-intensity conditions at leaf drying and vein drying stages; high-in-tensity conditions throughout the curing course), and then the contents of 48 aroma substances and taste indices of the finished tobacco leaves were measured. [Result] The contents of 28 aroma substances in the tobacco leaves cured under high-inten-sity conditions throughout the course were higher and the taste indices of these to-bacco leaves were better, compared with those flue-cured by the other two tech-niques. The contents of the other 20 aroma substances were not significantly af-fected by the curing techniques. The second best technique was high-intensity con-ditions at leaf yel owing and wilting stages and moderate-intensity conditions at leaf drying and vein drying stages. Curing tobacco leaves at moderate-intensity condi-tions throughout the course was the worst one. [Conclusion] Compared with the oth-er two methods, the contents of aroma substances and taste indices of the tobacco leaves cured under high-intensive conditions throughout the course were the best.展开更多
To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and ...To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and potassium hydroxide aqueous solution. The variations of pH, heat release and gel pH during the reactions were monitored and measured. Infrared spectroscopy (IR) and thermal gravity analysis (TG) techniques were used to characterize the curing reaction. It was found that organic ester is only partial y hydrolyzed and resin can be cured through organic ester hydrolysis process as wel as the reaction with redundant organic ester. The sequential curing mechanism of alkaline phenolic resin cured by organic ester was identified as fol ows: a portion of organic ester is firstly hydrolyzed owing to the effect of the strong alkaline; the gel is then formed after the pH decreases to about 10.8-10.88, meanwhile, the redundant organic ester (i.e. non-hydrolysis ester) starts the curing reaction with the resin. It has also been found that the curing rate depends on the hydrolysis velocity of organic ester. The faster the hydrolysis speed of the ester, the faster the curing rate of the resin.展开更多
This paper discusses the fundamental principle of microwave heating, and based on the advantages of microwave heating, use maleic anhydride as curing agent. The technology of microwave curing E44 epoxy resins is inves...This paper discusses the fundamental principle of microwave heating, and based on the advantages of microwave heating, use maleic anhydride as curing agent. The technology of microwave curing E44 epoxy resins is investigated, the mechanical properties of cured epoxy resin samples in different contents of curing agent by microwave and thermal curing methods are measured respectively, and then some experimental results for which are obtained. At last, this paper analyses why microwave curing can improve mechanical property of epoxy resin.展开更多
Carbon fiber reinforced plastics provide many excellent properties and are widely used in the aerospace industry.However,the existing composites autoclave process still faces difficulties such as high-energy consumpti...Carbon fiber reinforced plastics provide many excellent properties and are widely used in the aerospace industry.However,the existing composites autoclave process still faces difficulties such as high-energy consumption,uneven distribution of temperature field,complications of pressure transmission,and high cost,which limit their application in manufacturing of large complex composites components.In this study,the vibration treatment was introduced into the composites microwave curing process innovatively.On the basis of giving full play to the uniform heating characteristics of the microwave,the problems of a large number of internal defects and poor molding quality caused by the insufficient curing pressure have been solved.The results showed that the samples cured by the improved microwave process without external pressure had a few internal voids,excellent interface bonding conditions,and lower residual stress.Their properties were almost consistent with the samples prepared by the standard autoclave process,which provided a new method for the high-performance,efficient,safe,and low-cost manufacturing of large complex composites components.展开更多
Lost circulation, a recurring peril during drilling operations, entails substantial loss of drilling fluid and dire consequences upon its infiltration into the formation. As drilling depth escalates, the formation tem...Lost circulation, a recurring peril during drilling operations, entails substantial loss of drilling fluid and dire consequences upon its infiltration into the formation. As drilling depth escalates, the formation temperature and pressure intensify, imposing exacting demands on plug materials. In this study, a kind of controllable curing resin with dense cross-network structure was prepared by the method of solution stepwise ring-opening polymerization. The resin plugging material investigated in this study is a continuous phase material that offers effortless injection, robust filling capabilities, exceptional retention, and underground curing or crosslinking with high strength. Its versatility is not constrained by fracture-cavity lose channels, making it suitable for fulfilling the essential needs of various fracture-cavity combinations when plugging fracture-cavity carbonate rocks. Notably, the curing duration can be fine-tuned within the span of 3-7 h, catering to the plugging of drilling fluid losing of diverse fracture dimensions. Experimental scrutiny encompassed the rheological properties and curing behavior of the resin plugging system, unraveling the intricacies of the curing process and establishing a cogent kinetic model. The experimental results show that the urea-formaldehyde resin plugging material has a tight chain or network structure. When the concentration of the urea-formaldehyde resin plugging system solution remains below 30%, the viscosity clocks in at a meager 10 mPa·s. Optimum curing transpires at 60℃, showcasing impressive resilience to saline conditions. Remarkably, when immersed in a composite saltwater environment containing 50000 mg/L NaCl and 100000 mg/L CaCl_(2), the urea-formaldehyde resin consolidates into an even more compact network structure, culminating in an outstanding compressive strength of 41.5 MPa. Through resolving the correlation between conversion and the apparent activation energy of the non-isothermal DSC curing reaction parameters, the study attests to the fulfillment of the kinetic equation for the urea-formaldehyde resin plugging system. This discerning analysis illuminates the nuanced shifts in the microscopic reaction mechanism of the urea-formaldehyde resin plugging system. Furthermore, the pressure bearing plugging capacity of the resin plugging system for fractures of different sizes is also studied. It is found that the resin plugging system can effectively resident in parallel and wedge-shaped fractures of different sizes, and form high-strength consolidation under certain temperature conditions. The maximum plugging pressure of resin plugging system for parallel fractures with outlet size 3 mm can reach 9.92 MPa, and the maximum plugging pressure for wedge-shaped fractures with outlet size 5 mm can reach 9.90 MPa. Consequently, the exploration and application of urea-formaldehyde resin plugging material precipitate a paradigm shift, proffering novel concepts and methodologies in resolving the practical quandaries afflicting drilling fluid plugging.展开更多
Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial stre...Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete.展开更多
Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC)....Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.展开更多
In order to determine the best loading density of tobacco leaf with cage clamp in bulk-curing barns, a curing test was conducted on middle-part tobacco leaves. The results showed that for good appearance quality of cu...In order to determine the best loading density of tobacco leaf with cage clamp in bulk-curing barns, a curing test was conducted on middle-part tobacco leaves. The results showed that for good appearance quality of cured tobacco, the loading density at 59.52 kg/m2 (4 000 kg/barn) was the best, fol owed by 66.96 kg/m2 (4 500 kg/barn) and 74.40 kg/m2 (5 000 kg/barn). As leaf loading density increased, the contents of leaf nicotine and total nitrogen increased, sugar content had smal changes, the ratio of sugar to nicotine decreased and tended to be balanced and the content of neutral aroma substances was decreasing, but the difference among treatments was not significant. With the increase of loading density, the sensory quality of cured leaf was better. When leaf loading density was 66.96 kg/m2 (4 500 kg/barn), apperance quality of cured leaf improved considerably, with prominent aro-ma. Therefore, the best loading density of tobacco leaf in cage clamp of bulk-curing barn would be 66.96 kg/m2 (4 500 kg/barn) .展开更多
The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the i...The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.展开更多
The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents ...The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents were studied.Before and after CO_(2) curing,the physical properties in terms of the apparent density,water absorption and crushing value of RCA were tested and the quality of RCA was determined.Besides,scanning electron microscope was used to observe the microstructure of RCA.Results show that the physical properties variation of RCA with higher AM content are more significant,and the quality of RCA with lower AM content is easier to be upgraded during CO_(2) curing.The physical properties of RCA with 40.8% AM content are earlier stable than that with no less than 44.5% AM content during CO_(2) curing.The optimal temperature and relative humidity are 50 ℃ and 55% for CO_(2) curing,respectively.CO_(2) curing is incapable of upgrading the quality of RCA with AM no less than 50.6%.The quality of RCA with 44.5% AM content can be upgraded only under the optimum CO_(2) curing conditions.Under relative humidity higher than 40% and the CO_(2) curing time more than 12 h,CO_(2) curing upgrades the quality of RCA with 40.8% AM content.展开更多
基金supported by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘To overcome reliance on molds and the difficulty of fabricating complex geometries with traditional C/C composites,direct ink writing(DIW)with UV/heat dual curing was employed to produce high-performance C/C composites.The rheological properties of the composite inks were systematically analyzed to assess the effects of phenolic resin(PR)and carbon fiber(CF)content.Results show pronounced shear-thinning behavior and strong thixotropy-both essential for stable DIW.Additionally,UV/heat curing behavior was characterized to provide theoretical insights for optimizing curing parameters.Notably,CF addition is found to significantly attenuate UV light penetration compared to pure PR.As CF content increases,the critical UV irradiation energy rises sharply from 68.47 to 911.19 mJ/cm^(2),necessitating precise adjustments to curing parameters.Preforms were pyrolyzed in a carbon tube furnace to examine pore-formation characteristics,and chemical vapor infiltration(CVI)was applied to filling the resulting pores,yielding C/C composites with a flexural strength of 115.19 MPa.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[RhCl(Ph3P)3]as the catalyst.[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane is a novel kind of silicon-containing epoxide.The factors affecting the reaction yield,such as catalyst use,reaction time and reaction temperature,were investigated,and the synthesized product was characterized and analyzed by FT-IR and 1H-NMR.A series of amine-curing resins were prepared with[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane,bisphenol A epoxy resin(E-51)and modified amine(593 amine).The mechanical properties of cured splines with the different proportions of amine-curing resins were tested.When the content of 593 amine was 20%,the content of E-51 was 75%and the amount of[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was 5%,the mechanical properties of the cured splines were the best with the tensile strength being 23.3 MPa,the elongation at break being 7.8%,and the Young's modulus being 421.3 MPa.
基金Funded by the Guangxi Key Research and Development Program(No.GK AB19259008)the Director's Fund of Key Laboratory of Non-ferrous Metals and Materials Processing New Technology of Ministry of Education(No.22AA-6)。
文摘To address the negative impact of an internal curing agent on strength while preserving its ability to resist autogenous shrinkage,we investigated the incorporation of triethanolamine and triisopropanolamine as early-strength components.These additives were combined with an internal curing agent to prepare a compound early-strength internal curing agent so as to investigate how compound early-strength internal curing agents affect the mechanical characteristics and volume stability of mortar.This was assessed using a battery of tests,including strength,autogenous shrinkage,internal relative humidity,mercury intrusion porosimetry,X-ray powder diffraction,and scanning electron microscopy.These results indicate that the compound early-strength internal curing agent effectively maintains the volume stability of the mortar without compromising its early mechanical properties.The compressive strength ratios of the mortar mixed with the compound early-strength internal curing agent were 109.45% at 3 days and 119% at 7 days,indicating significant improvement compared with the internal curing agent.Furthermore,the 7-day autogenous shrinkage rate of the mortar was-56.78μm/m.The proportion of hazardous-grade pores larger than 100 nm was reduced to 3.54%,and the pore distribution was uniform.This study introduces innovative ideas and methods for mitigating the adverse effects of internal curing agents on the early strength of mortar.
基金Project(LM(2022)-F-053)supported by the China Railway Resources Science and Technology。
文摘Molybdenum tailings are the solid waste left from ore processing,which damages soil and water resources.To address that,molybdenum tailings(MTs)powder obtained from molybdenum tailings sands was processed as an admixture.Compared with moisture-cured conditions,the influence of MTs on the steam-cured mortar’s mechanical properties,surface and internal pore characteristics,and microscopic morphology was investigated.The results show that steam-cured mortar containing appropriate MTs can still have high early strength.When the content of MTs doesn’t exceed 15%,the mechanical strength of mortar steam-cured for 3 d can reach 85%of that of corresponding mortar moisture-cured for 28 d,and that of mortar steam-cured for 28 d isn’t lower than 90%of that of pure cement mortar.The proportion of harmful pores(HFP)and more harmful pores(MHFP)and most probable pore diameters(MPD)on the mortar surface containing MTs steam-cured for 28 d are significantly decreased.When MTs’content is 15%,the proportion of HFP and MHFP on the surface of paste is decreased by 71.4%and 72.2%,respectively,with MPS decreasing from 12.7 nm to 10.8 nm.SEM analysis shows that the surfaces of steam-cured paste containing 15%MTs have more hydration products and dense microstructures.The effect of pozzolanic and dense filling of MTs effectively refines the pore structure,reducing the large pore-size pores.
基金Funded by the National Natural Science Foundation of China (No.22203066)the 6th Young Elite Scientist Sponsorship Program by China Association for Science and Technology (No.2020QNRC001)。
文摘The size effects were experimentally investigated and the underlying mechanism was analyzed.The results reveal that,as the specimen size increases,the interconnectivity of macropores slightly decreases.This in turn constrains the diffusion of CO_(2) and moisture in the specimens,resulting in an increase in the discrepancy between the internal and external carbonation degrees.An increase in cement paste thickness simultaneously decreases the quantity,average size,and interconnectivity of macropores,lowering the diffusion efficacy of CO_(2) and moisture and exacerbating the overall heterogeneity in carbonation.Moreover,the gradual blockage of macropores leads to the emergence of localized ‘occluded zones’ with much lower carbonation degree.The reduction in aggregate size significantly alters the average diameter and connectivity of macropores,leading to notable change to overall non-uniformity.This study provides insight into improving the CO_(2) curing effect of pervious concrete products and developing uniform curing methods.
基金Project(52479115)supported by the National Natural Science Foundation of ChinaProject(2024SF-YBXM-615)supported by the Key Research and Development Program of Shaanxi Province,China+1 种基金Project(2022943)supported by the Youth Innovation Team of Shaanxi Universities,ChinaProject(300102283721)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.
基金Supported by Project of Zunyi Tobacco Company[ZYJ(2014)No.201407]
文摘[ Objective] This study aimed to investigate the curing performance of polyurethane curing barn and reduce the cost of tobacco leaf flue-curing. [ Meth- odl The temperature control effect, curing effect and curing cost of polyurethane curing barn and traditional bulk curing barn were analyzed and compared. [ Re- suit] The results showed that there were no significant differences in curing performance between two types of curing barns. Horizontal temperature differences in- creased slightly as the temperature rose. Specifically, horizontal temperature differences between each layer ranged from 0.2 ~C to 0.5 ~. Both two types of curing barns exhibited uniform air distribution. Polyurethane curing barn exhibited stable vertical temperature differences. Both two types of curing barns presented good curing effects with slight differences. Polyurethane curing barn exhibited higher economic benefits, lower coal cost, lower electricity cost, lower labor cost and lon- ger service life than traditional bulk curing barn, but its construction cost was higher. [ Conclusion] Polyurethane curing barn exhibits better curing performance with ~ood application prospects.
基金Supported by China National Tobacco Corporation General Project(〔2012〕122)Chongqing Branch Company S&T Project of China National Tobacco Corporation(NY20110601070010)~~
文摘[Objective]The aim was to explore effects of curing technique parameters on chemical components and aromatic material accumulation to formulate a suitable curing technique and for and to achieve tobacco scalding, drying and giving aromat- ic flavor. [Method] With tobacco variety KRK 26 as test materials, the test involved parameters of three curing-techniques in down, middle and upper parts of flue-cured tobaccos in an oven to measure chemical components and aromatic substances in tobaccos. [Result] The effects of curing techniques on total sugar and reducing sug- ar differed upon temperature and humidity. The contents of chemical components, such as total alkaloid, total N and the ratio of sugar/ alkali by moderate temperature and high humidity technique were of significant differences with those by moderate temperature and moderate humidity technique and with low temperature and low hu- midity technique; the chemical components by moderate temperature and moderate humidity were of insignificant differences with the treatment by low temperature and low humidity technique. Total amount of aroma components by different curing tech- niques from high to low was the treatment by low temperature and low humidity technique (461.72 μg/g), the treatment by moderate temperature and moderate hu- midity technique (450.06μg/g) and the treatment by moderate temperature and high humidity technique (385.12μg/g), suggesting the content of aromatic substances is high at low temperature and low humidity. [Conclusion] Moderate temperature and high humidity curing technique has significant effects on total alkaloid, total N and the ratio of sugar/ alkali of tobaccos and different curing techniques also affect the total amount of aromatic substances of flue-cured tobaccos.
文摘Curing of Bacillus subtilis plasmid using sodium dodecyl sulfate (SDS)was studied in order to obtain a host strain. An overnight culture of Bacillus subtilis 24/pMX45 was used to inoculate fresh LB containing SDS (0-0.008%). No growth of 24/pMX45 was observed when LB contained an SDS concentration of 0.006% or greater, and the sublethal concentration (w/v) of SDS was 0.005% with a killing rate of 99%. Samples were diluted and plated on LB agar, individual colonies were randomly picked to a selective agar medium by tooth to screen for loss of plasmid-encoded erythomycin resistance. CsCl-EtBr gradient centrifugation and plasmid DNA profile demonstrated that plasmid-cured derivative A7 has completely lost its plasmid. A7 had a shorter lag, and its cell concentration was consistently higher than that of the 24/pMX45. Elimination of the plasmid was first observed after 24/pMX45 had been treated with SDS for 8 h. The percent elimination then continued to increase until about 22 h, after which the fraction of cured cell in the population remained constant. Plasmid cured cell numbers were measured in a separate control culture of 24/pMX45 untreated by SDS. No spontaneous loss of pMX45 was observed after 24/pMX45 were incubated for 24 h and 48 h with shaking at 37 ℃.These results suggested that SDS can be used as curing agent to eliminate the plasmid of Bacillus subtilis.
基金Supported by China National Tobacco Corporation General Project[(2012)No.122]Chongqing Branch Company S&T Project of China National Tobacco Corporation(NY20110601070010)~~
文摘[Objective] The aim was to compare effects of three curing techniques (Chinese tobacco curing-method for improving tobacco quality and fragrance, Chi-nese (three-phase) tobacco curing technique, and Zimbabwe tobacco curing tech-nique) on quality of tobacco and to select optimal curing method. [Method] In Peng-shui county in Chongqing, tobacco variety K326 was chosen as test materials to conduct tobacco curing tests as per three techniques to analyze key components of raw tobacco, grade quality and evaluation quality. [Result] The content of starch in tobacco was reduced by Chinese tobacco curing-method for improving tobacco quality and fragrance, and the ratio of middle and high quality grade tobaccos improved by 1.8%-7.95%; average price increased by 1.64-3.21 yuan/kg; evaluation grade grew by 1.5-4.4. The technique is proved in enhancing tobacco fragrance quality and quantity as wel as improving and adjusting fragrance, taste and flavor. [Conclusion] Chinese (three-phase) tobacco curing technique improves tobacco quality and provides references for production demonstration areas of tobacco curing.
基金Supported by the General Program of Science and Technology Research of ChinaNational Tobacco Corporation[(2012)122]Science and Technology Research Programof Chongqing Branch of China National Tobacco Corporation(NY20110601070010)~~
文摘[Objective]This study aimed to optimize the conditions for curing tobacco leaf, so as to improve its flavor and quality. [Method] Leaves of Yuanyan 87 were col ected and cured by three different techniques (moderate-intensity conditions throughout the curing course; high-intensity conditions at leaf yel owing and wilting stages, moderate-intensity conditions at leaf drying and vein drying stages; high-in-tensity conditions throughout the curing course), and then the contents of 48 aroma substances and taste indices of the finished tobacco leaves were measured. [Result] The contents of 28 aroma substances in the tobacco leaves cured under high-inten-sity conditions throughout the course were higher and the taste indices of these to-bacco leaves were better, compared with those flue-cured by the other two tech-niques. The contents of the other 20 aroma substances were not significantly af-fected by the curing techniques. The second best technique was high-intensity con-ditions at leaf yel owing and wilting stages and moderate-intensity conditions at leaf drying and vein drying stages. Curing tobacco leaves at moderate-intensity condi-tions throughout the course was the worst one. [Conclusion] Compared with the oth-er two methods, the contents of aroma substances and taste indices of the tobacco leaves cured under high-intensive conditions throughout the course were the best.
文摘To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and potassium hydroxide aqueous solution. The variations of pH, heat release and gel pH during the reactions were monitored and measured. Infrared spectroscopy (IR) and thermal gravity analysis (TG) techniques were used to characterize the curing reaction. It was found that organic ester is only partial y hydrolyzed and resin can be cured through organic ester hydrolysis process as wel as the reaction with redundant organic ester. The sequential curing mechanism of alkaline phenolic resin cured by organic ester was identified as fol ows: a portion of organic ester is firstly hydrolyzed owing to the effect of the strong alkaline; the gel is then formed after the pH decreases to about 10.8-10.88, meanwhile, the redundant organic ester (i.e. non-hydrolysis ester) starts the curing reaction with the resin. It has also been found that the curing rate depends on the hydrolysis velocity of organic ester. The faster the hydrolysis speed of the ester, the faster the curing rate of the resin.
基金The research was supported by the open fund from the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(SKJ-9805)
文摘This paper discusses the fundamental principle of microwave heating, and based on the advantages of microwave heating, use maleic anhydride as curing agent. The technology of microwave curing E44 epoxy resins is investigated, the mechanical properties of cured epoxy resin samples in different contents of curing agent by microwave and thermal curing methods are measured respectively, and then some experimental results for which are obtained. At last, this paper analyses why microwave curing can improve mechanical property of epoxy resin.
基金Project(2018YFA0702800)supported by the National Key R&D Program of China。
文摘Carbon fiber reinforced plastics provide many excellent properties and are widely used in the aerospace industry.However,the existing composites autoclave process still faces difficulties such as high-energy consumption,uneven distribution of temperature field,complications of pressure transmission,and high cost,which limit their application in manufacturing of large complex composites components.In this study,the vibration treatment was introduced into the composites microwave curing process innovatively.On the basis of giving full play to the uniform heating characteristics of the microwave,the problems of a large number of internal defects and poor molding quality caused by the insufficient curing pressure have been solved.The results showed that the samples cured by the improved microwave process without external pressure had a few internal voids,excellent interface bonding conditions,and lower residual stress.Their properties were almost consistent with the samples prepared by the standard autoclave process,which provided a new method for the high-performance,efficient,safe,and low-cost manufacturing of large complex composites components.
基金financially supported by the National Natural Science Foundation of China (Grant 52374023, 52288101)Taishan Scholar Young Expert (Grant tsqn202306117)。
文摘Lost circulation, a recurring peril during drilling operations, entails substantial loss of drilling fluid and dire consequences upon its infiltration into the formation. As drilling depth escalates, the formation temperature and pressure intensify, imposing exacting demands on plug materials. In this study, a kind of controllable curing resin with dense cross-network structure was prepared by the method of solution stepwise ring-opening polymerization. The resin plugging material investigated in this study is a continuous phase material that offers effortless injection, robust filling capabilities, exceptional retention, and underground curing or crosslinking with high strength. Its versatility is not constrained by fracture-cavity lose channels, making it suitable for fulfilling the essential needs of various fracture-cavity combinations when plugging fracture-cavity carbonate rocks. Notably, the curing duration can be fine-tuned within the span of 3-7 h, catering to the plugging of drilling fluid losing of diverse fracture dimensions. Experimental scrutiny encompassed the rheological properties and curing behavior of the resin plugging system, unraveling the intricacies of the curing process and establishing a cogent kinetic model. The experimental results show that the urea-formaldehyde resin plugging material has a tight chain or network structure. When the concentration of the urea-formaldehyde resin plugging system solution remains below 30%, the viscosity clocks in at a meager 10 mPa·s. Optimum curing transpires at 60℃, showcasing impressive resilience to saline conditions. Remarkably, when immersed in a composite saltwater environment containing 50000 mg/L NaCl and 100000 mg/L CaCl_(2), the urea-formaldehyde resin consolidates into an even more compact network structure, culminating in an outstanding compressive strength of 41.5 MPa. Through resolving the correlation between conversion and the apparent activation energy of the non-isothermal DSC curing reaction parameters, the study attests to the fulfillment of the kinetic equation for the urea-formaldehyde resin plugging system. This discerning analysis illuminates the nuanced shifts in the microscopic reaction mechanism of the urea-formaldehyde resin plugging system. Furthermore, the pressure bearing plugging capacity of the resin plugging system for fractures of different sizes is also studied. It is found that the resin plugging system can effectively resident in parallel and wedge-shaped fractures of different sizes, and form high-strength consolidation under certain temperature conditions. The maximum plugging pressure of resin plugging system for parallel fractures with outlet size 3 mm can reach 9.92 MPa, and the maximum plugging pressure for wedge-shaped fractures with outlet size 5 mm can reach 9.90 MPa. Consequently, the exploration and application of urea-formaldehyde resin plugging material precipitate a paradigm shift, proffering novel concepts and methodologies in resolving the practical quandaries afflicting drilling fluid plugging.
基金The National Natural Science Foundation of China(No.51178455)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2015133)
文摘Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete.
文摘Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.
文摘In order to determine the best loading density of tobacco leaf with cage clamp in bulk-curing barns, a curing test was conducted on middle-part tobacco leaves. The results showed that for good appearance quality of cured tobacco, the loading density at 59.52 kg/m2 (4 000 kg/barn) was the best, fol owed by 66.96 kg/m2 (4 500 kg/barn) and 74.40 kg/m2 (5 000 kg/barn). As leaf loading density increased, the contents of leaf nicotine and total nitrogen increased, sugar content had smal changes, the ratio of sugar to nicotine decreased and tended to be balanced and the content of neutral aroma substances was decreasing, but the difference among treatments was not significant. With the increase of loading density, the sensory quality of cured leaf was better. When leaf loading density was 66.96 kg/m2 (4 500 kg/barn), apperance quality of cured leaf improved considerably, with prominent aro-ma. Therefore, the best loading density of tobacco leaf in cage clamp of bulk-curing barn would be 66.96 kg/m2 (4 500 kg/barn) .
基金Projects(52175373,52005516)supported by the National Natural Science Foundation of ChinaProject(2018YFA0702800)supported by the National Key Basic Research Program,ChinaProject(ZZYJKT2021-03)supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China。
文摘The vibration pretreatment-microwave curing process is an efficient,low energy consumption,and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites.This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content,microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy,universal tensile testing machine and thermo-gravimetric analyzer.Additionally,the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing.The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant.The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80℃ demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing.Moreover,the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0°and 90°fiber directions,when the laminate was cooled to 60℃.
基金Funded by the National Natural Science Foundation of China (Nos. 52078068, 52108190)Changzhou Science and Technology Project (No. CJ20200079)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. KYCX21_2846)。
文摘The effects of carbon dioxide (CO_(2)) curing conditions (temperature,relative humidity and CO_(2) curing time) on the physical properties of recycled coarse aggregate (RCA) with varying attached mortar (AM) contents were studied.Before and after CO_(2) curing,the physical properties in terms of the apparent density,water absorption and crushing value of RCA were tested and the quality of RCA was determined.Besides,scanning electron microscope was used to observe the microstructure of RCA.Results show that the physical properties variation of RCA with higher AM content are more significant,and the quality of RCA with lower AM content is easier to be upgraded during CO_(2) curing.The physical properties of RCA with 40.8% AM content are earlier stable than that with no less than 44.5% AM content during CO_(2) curing.The optimal temperature and relative humidity are 50 ℃ and 55% for CO_(2) curing,respectively.CO_(2) curing is incapable of upgrading the quality of RCA with AM no less than 50.6%.The quality of RCA with 44.5% AM content can be upgraded only under the optimum CO_(2) curing conditions.Under relative humidity higher than 40% and the CO_(2) curing time more than 12 h,CO_(2) curing upgrades the quality of RCA with 40.8% AM content.