Demographic estimation becomes a problem of small area estimation when detaileddisaggregation leads to small cell counts.The usual difficulties of small area estimation are compounded when the available data sources c...Demographic estimation becomes a problem of small area estimation when detaileddisaggregation leads to small cell counts.The usual difficulties of small area estimation are compounded when the available data sources contain measurement errors.We present a Bayesianapproach to the problem of small area estimation with imperfect data sources.The overall modelcontains separate submodels for underlying demographic processes and for measurement processes.All unknown quantities in the model,including coverage ratios and demographic rates,are estimated jointly via Markov chain Monte Carlo methods.The approach is illustrated usingthe example of provincial fertility rates in Cambodia.展开更多
文摘Demographic estimation becomes a problem of small area estimation when detaileddisaggregation leads to small cell counts.The usual difficulties of small area estimation are compounded when the available data sources contain measurement errors.We present a Bayesianapproach to the problem of small area estimation with imperfect data sources.The overall modelcontains separate submodels for underlying demographic processes and for measurement processes.All unknown quantities in the model,including coverage ratios and demographic rates,are estimated jointly via Markov chain Monte Carlo methods.The approach is illustrated usingthe example of provincial fertility rates in Cambodia.