Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,i...Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.展开更多
This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual cou...This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual coupling scenario.The article proposed several critical aspects,including the optimization of transmission data requirements,which is essential to ensure that communication between trains is efficient and reliable.The design of the T2T wireless communication subsystem is discussed in detail,outlining the technical specifications,protocols,and technologies employed to facilitate wireless communication between multiple trains.Additionally,the article presents a thorough analysis of the data collected during real-world train experiments,highlighting the performance metrics and challenges encountered during testing.This empirical data not only validates the effectiveness of the proposed design but also serves as a crucial reference for future advancements in T2T wireless communication systems.By combining both theoretical principles and practical outcomes,the article offers insights that will aid engineers and researchers in developing robust and efficient wireless communication systems for next-generation train operations.展开更多
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of ...Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.展开更多
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s...Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.展开更多
We investigate the non-Gaussian feature of radiation in a circuit quantum electrodynamics(QED)system where two qubits are strongly coupled to a single-mode cavity.In the regime of ultrastrong coupling(USC),the rotatin...We investigate the non-Gaussian feature of radiation in a circuit quantum electrodynamics(QED)system where two qubits are strongly coupled to a single-mode cavity.In the regime of ultrastrong coupling(USC),the rotating-wave approximation is not valid,and the Rabi Hamiltonian contains counter-rotating wave terms,leading to level crossing and avoided crossings in the energy spectrum.We further analyze the intensity-amplitude correlation of the output field in these two novel scenarios.In the USC regime,the creation and annihilation operators in the correlation function are replaced,allowing for the identification of non-Gaussian features in the output field.Our findings reveal that despite the absence of squeezing effects in the output light,significant non-Gaussian characteristics are present.Additionally,we demonstrate that as the driving or coupling strength increases,the non-Gaussian features of the output field become more pronounced.This suggests that USC systems hold broad potential applications in the realms of nonlinear optics and the generation of non-Gaussian states.展开更多
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu...In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.展开更多
Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design para...Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments.展开更多
We theoretically study the four-wave mixing(FWM)response in a quantum dot-cavity coupling system,where a two-level quantum dot(QD)is placed in an optical cavity while the cavity mode is coupled to the nanomechanical r...We theoretically study the four-wave mixing(FWM)response in a quantum dot-cavity coupling system,where a two-level quantum dot(QD)is placed in an optical cavity while the cavity mode is coupled to the nanomechanical resonator via radiation pressure.The influences of the QD-cavity coupling strength,the Rabi coupling strength of the QD,and the power of the pump light on the FWM intensity are mainly considered.The numerical results show that the FWM intensity in this hybrid system can be significantly enhanced by increasing the QD-cavity coupling strength.In addition,the FWM intensity can be effectively modulated by the Rabi coupling strength and the pump power.Furthermore,the effects of the cavity decay rate and the cavitypump detuning on the FWM signal are also explored.The obtained results may have potential applications in the fields of quantum optics and quantum information science.展开更多
A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1....A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and inter...The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.展开更多
It is shown that the Kronecker product can be applied to construct a new integrable coupling system of soliton equation hierarchy in this paper. A direct application to the Burgers spectral problem leads to a novel so...It is shown that the Kronecker product can be applied to construct a new integrable coupling system of soliton equation hierarchy in this paper. A direct application to the Burgers spectral problem leads to a novel soliton equation hierarchy of integrable coupling system. It indicates that the Kronecker product is an efficient and straightforward method to construct the integrable couplings.展开更多
A simple 3M-dimensional loop algebra X is produced, whose commutation operation defined by us is A1 as simple and straightforward as that in the loop algebra A1. It follows that a general scheme for generating multi-...A simple 3M-dimensional loop algebra X is produced, whose commutation operation defined by us is A1 as simple and straightforward as that in the loop algebra A1. It follows that a general scheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then by making use of the Tu scheme the well-known multi-component Levi hierarchy is obtained. Finally, an expanding loop algebra FM of the loop algebra .X is presented, based on the FM, the multi-component integrable coupling system of the multi-component Levi hierarchy is worked out. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
This paper presents a set of multicomponent matrix Lie algebra, which is used to construct a new loop algebra A^-M. By using the Tu scheme, a Liouville integrable multicomponent equation hierarchy is generated, which ...This paper presents a set of multicomponent matrix Lie algebra, which is used to construct a new loop algebra A^-M. By using the Tu scheme, a Liouville integrable multicomponent equation hierarchy is generated, which possesses the Hamiltonian structure. As its reduction cases, the multicomponent (2+1)-dimensional Glachette-Johnson (G J) hierarchy is given. Finally, the super-integrable coupling system of multicomponent (2+1)-dimensional GJ hierarchy is established through enlarging the spectral problem.展开更多
It is shown in this paper that the upper triangular strip matrix of Lie algebra can be used to construct a new integrable coupling system of soliton equation hierarchy. A direct application to the Ablowitz-Kaup Newell...It is shown in this paper that the upper triangular strip matrix of Lie algebra can be used to construct a new integrable coupling system of soliton equation hierarchy. A direct application to the Ablowitz-Kaup Newell- Segur(AKNS) spectral problem leads to a novel multi-component soliton equation hierarchy of an integrable coupling system with sixteen-potential functions. It is indicated that the study of integrable couplings when using the upper triangular strip matrix of Lie algebra is an efficient and straightforward method.展开更多
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice ...The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.展开更多
We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit applicati...We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit application of the method proposed in the paper, the infinite conservation laws of the nonlinear integrable coupling of the Volterra lattice hierarchy are presented.展开更多
The mass production of plastic parts containing micro structures in optical quality requires molds with corresponding surface quality. These micro structured molds can be produced by UPC (ultra precision cutting). T...The mass production of plastic parts containing micro structures in optical quality requires molds with corresponding surface quality. These micro structured molds can be produced by UPC (ultra precision cutting). To produce a high surface quality the ultra precision machine spindles must be well balanced. It is not sufficient to balance the tools and the spindle separately. They have to be balanced while assembled to ensure the required balance quality grade better than G0.4. One possibility to decrease setup times and increase the quality of the spindle balancing is to enhance the unbalance induced vibrations and thus allowing better unbalance detection. In this paper a coupling system between the spindle and machine frame based on flexure joints is presented. The experimental setup provides two states: operational and setup. The operational state provides a high stiffness, whereas the setup state allows the spindle to vibrate along one degree of freedom, enhancing the vibrations created by the unbalance. The system is analyzed concerning its ability to restore the defined conditions in the operational state as well as its capability to enhance the detection of unbalances in the setup state.展开更多
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of t...The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results.展开更多
基金supported by 2024 Central Guidance Local Science and Technology Development Fund Project"Study on the mechanism and evaluation method of thermal pollution in water bodies,as well as research on thermal carrying capacity".(Grant 246Z4506G)Key Research and Development Project in Hebei Province:"Key Technologies and Equipment Research and Demonstration of Multiple Energy Complementary(Electricity,Heat,Cold System)for Solar Energy,Geothermal Energy,Phase Change Energy"(Grant 236Z4310G)the Hebei Academy of Sciences Key Research and Development Program"Research on Heat Transfer Mechanisms and Efficient Applications of Intermediate and Deep Geothermal Energy"(22702)。
文摘Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.
基金supported by the National Key R&D Program of China(2021YFF0501103).
文摘This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual coupling scenario.The article proposed several critical aspects,including the optimization of transmission data requirements,which is essential to ensure that communication between trains is efficient and reliable.The design of the T2T wireless communication subsystem is discussed in detail,outlining the technical specifications,protocols,and technologies employed to facilitate wireless communication between multiple trains.Additionally,the article presents a thorough analysis of the data collected during real-world train experiments,highlighting the performance metrics and challenges encountered during testing.This empirical data not only validates the effectiveness of the proposed design but also serves as a crucial reference for future advancements in T2T wireless communication systems.By combining both theoretical principles and practical outcomes,the article offers insights that will aid engineers and researchers in developing robust and efficient wireless communication systems for next-generation train operations.
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金supported by the National Natural Science Foundation of China(U23A20666)the China National Railway Group Corporation Science and Technology Research and Development Program(N2023G083).
文摘Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.
基金funded by the Open Projects Foundation of Engineering Research Center of Disaster Prevention and Mitigation of Southeast Coastal Engineering Structures of Fujian Province University(Grant No.2022009)the National Natural Science Foundation of China(Grant No.51708429)the Construction Science and Technology Plan Projects of Hubei Province(Grant No.2023011).
文摘Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.
基金supported by the National Natural Science Foundation of China(Grant No.12104195)the Natural Science Foundation of Jiangxi Province of China(Grant No.20232BAB211033).
文摘We investigate the non-Gaussian feature of radiation in a circuit quantum electrodynamics(QED)system where two qubits are strongly coupled to a single-mode cavity.In the regime of ultrastrong coupling(USC),the rotating-wave approximation is not valid,and the Rabi Hamiltonian contains counter-rotating wave terms,leading to level crossing and avoided crossings in the energy spectrum.We further analyze the intensity-amplitude correlation of the output field in these two novel scenarios.In the USC regime,the creation and annihilation operators in the correlation function are replaced,allowing for the identification of non-Gaussian features in the output field.Our findings reveal that despite the absence of squeezing effects in the output light,significant non-Gaussian characteristics are present.Additionally,we demonstrate that as the driving or coupling strength increases,the non-Gaussian features of the output field become more pronounced.This suggests that USC systems hold broad potential applications in the realms of nonlinear optics and the generation of non-Gaussian states.
文摘In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.
基金supported by National Natural Science Foundation of China (Grant No. 50675095)
文摘Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments.
基金supported by the National Natural Science Foundation of China(Grant Nos.11504258,61775043 and 11805140)the Natural Science Foundation of Shanxi Province(Grant Nos.201801D221021 and 201801D221031)。
文摘We theoretically study the four-wave mixing(FWM)response in a quantum dot-cavity coupling system,where a two-level quantum dot(QD)is placed in an optical cavity while the cavity mode is coupled to the nanomechanical resonator via radiation pressure.The influences of the QD-cavity coupling strength,the Rabi coupling strength of the QD,and the power of the pump light on the FWM intensity are mainly considered.The numerical results show that the FWM intensity in this hybrid system can be significantly enhanced by increasing the QD-cavity coupling strength.In addition,the FWM intensity can be effectively modulated by the Rabi coupling strength and the pump power.Furthermore,the effects of the cavity decay rate and the cavitypump detuning on the FWM signal are also explored.The obtained results may have potential applications in the fields of quantum optics and quantum information science.
基金中国科学院资助项目,the Science Foundation of Liuhui Center of Tianjin University and Nankai University,辽宁省自然科学基金
文摘A new 3M-dimensional Lie algebra X is constructed firstly. Then, the corresponding loop algebra X is produced, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra A1.It follows that a generalscheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then well-known multi-component TC hierarchy is obtained. Finally,an expanding loop algebra FM of the loop algebra X is presented. Based on the FM, the multi-component integrable coupling system of the generalized multi-component TC hierarchy has been worked out. The method in this paper can be applied to other nonlinear evolution equations hierarchies. It is easy to find that we can construct any finite-dimensional Lie algebra by this approach.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
基金the National Natural Science Foundation of China(Grant Nos.12064012 and 11374096).
文摘The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.
基金supported by the Research Work of Liaoning Provincial Development of Education under Grant No. 2008670
文摘It is shown that the Kronecker product can be applied to construct a new integrable coupling system of soliton equation hierarchy in this paper. A direct application to the Burgers spectral problem leads to a novel soliton equation hierarchy of integrable coupling system. It indicates that the Kronecker product is an efficient and straightforward method to construct the integrable couplings.
基金the National Natural Science Foundation of China under,南开大学-天津大学合作项目,天津大学校科研和教改项目,the Educational Committee of Liaoning Province of China under Gant
文摘A simple 3M-dimensional loop algebra X is produced, whose commutation operation defined by us is A1 as simple and straightforward as that in the loop algebra A1. It follows that a general scheme for generating multi-component integrable hierarchy is proposed. By taking advantage of X, a new isospectral problem is established, and then by making use of the Tu scheme the well-known multi-component Levi hierarchy is obtained. Finally, an expanding loop algebra FM of the loop algebra .X is presented, based on the FM, the multi-component integrable coupling system of the multi-component Levi hierarchy is worked out. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金supported by the National Key Basic Research Development of China (Grant No 2004CB318000)
文摘This paper presents a set of multicomponent matrix Lie algebra, which is used to construct a new loop algebra A^-M. By using the Tu scheme, a Liouville integrable multicomponent equation hierarchy is generated, which possesses the Hamiltonian structure. As its reduction cases, the multicomponent (2+1)-dimensional Glachette-Johnson (G J) hierarchy is given. Finally, the super-integrable coupling system of multicomponent (2+1)-dimensional GJ hierarchy is established through enlarging the spectral problem.
基金supported by the Research Work of Liaoning Provincial Development of Education,China (Grant No 2008670)
文摘It is shown in this paper that the upper triangular strip matrix of Lie algebra can be used to construct a new integrable coupling system of soliton equation hierarchy. A direct application to the Ablowitz-Kaup Newell- Segur(AKNS) spectral problem leads to a novel multi-component soliton equation hierarchy of an integrable coupling system with sixteen-potential functions. It is indicated that the study of integrable couplings when using the upper triangular strip matrix of Lie algebra is an efficient and straightforward method.
基金*The project supported by the National Key Basic Research Development of China under Grant No. N1998030600 and National Natural Science Foundation of China under Grant No. 10072013
文摘The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.
基金Project supported by the Postdoctoral Science Foundation of China (Grant No. 2011M500404 )the Program for Liaoning Excellent Talents in University,China (Grant No. LJQ2011119)
文摘We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit application of the method proposed in the paper, the infinite conservation laws of the nonlinear integrable coupling of the Volterra lattice hierarchy are presented.
文摘The mass production of plastic parts containing micro structures in optical quality requires molds with corresponding surface quality. These micro structured molds can be produced by UPC (ultra precision cutting). To produce a high surface quality the ultra precision machine spindles must be well balanced. It is not sufficient to balance the tools and the spindle separately. They have to be balanced while assembled to ensure the required balance quality grade better than G0.4. One possibility to decrease setup times and increase the quality of the spindle balancing is to enhance the unbalance induced vibrations and thus allowing better unbalance detection. In this paper a coupling system between the spindle and machine frame based on flexure joints is presented. The experimental setup provides two states: operational and setup. The operational state provides a high stiffness, whereas the setup state allows the spindle to vibrate along one degree of freedom, enhancing the vibrations created by the unbalance. The system is analyzed concerning its ability to restore the defined conditions in the operational state as well as its capability to enhance the detection of unbalances in the setup state.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results.