This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted ...This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted to evaluate the effects of spring parameters on the non-planar vibration characteristics and buckling behaviors of the coupled system. The nonlinear governing equations are derived with Hamilton's principle,subsequently discretized through Galerkin's method, and finally numerically solved by the Runge-Kutta algorithm. Based on the linearized equations, an eigenvalue analysis is performed to obtain the coupled frequencies, modal shapes, and critical flow velocities for buckling instability. Quantitative assessments further elucidate the effects of the spring position and stiffness coefficient on the coupled frequencies and critical flow velocities.Nonlinear dynamic analyses reveal the evolution of buckling patterns and bifurcation behaviors between the lateral displacements of the two pipes and the flow velocity. Numerical results indicate that the intermediate spring increases the susceptibility to buckling instability in the out-of-plane direction compared with the in-plane direction. Furthermore, synchronized lateral displacements emerge in both pipes when the flow velocity of one pipe exceeds the critical threshold. This work is expected to provide a theoretical foundation for the stability assessment and vibration analysis in coupled fluid-conveying pipe systems.展开更多
A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pip...A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pipe is calculated considering the structural-acoustic coupling. The results show that longitudinal vibration band gaps and acoustic band gaps can coexist in the fluid-filled periodic pipe. The formation of the band gap mechanism is further analyzed. The band gaps are validated by the sound transmission loss and vibration-frequency response functions calculated using the finite element method. The effect of the damp on the band gap is analyzed by calculating the complex band structure. The periodic pipe system can be used not only in the field of vibration reduction but also for noise elimination.展开更多
Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for du...Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety.展开更多
The influence of Mo addition on the microstructure and properties of TiNiNb alloy with 4.5 at.% Nb has been investigated systemically. The experimental results indicated that the uniform distribution of Mo depresses t...The influence of Mo addition on the microstructure and properties of TiNiNb alloy with 4.5 at.% Nb has been investigated systemically. The experimental results indicated that the uniform distribution of Mo depresses the appearance of coarse 13-Nb particles at the grain boundaries and short stripped texture consisting of abundant fine disperse Nb-rich particles appears around the grain boundaries. The yield strength of the alloy was enhanced from 450 to 600 MPa due to the solution strengthening of Nb and Mo and the elongation reached 18% when the Mo content is 0.5 at.%. At the same time, the shape memory effect of the alloy also is improved significantly by the Mo addition. The maximum recoverable strain of the alloy with 0.5 at.% Mo is near 8% and has reached the high level of Ni-Ti binary alloys. This novel high- strength alloy is promising to be used for high pressure tube and the macro-scale coupling with higher-quality requirements.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12325201,12272140,and 12322201)。
文摘This study investigates the dynamical behavior of two parallel fluid-conveying pipes by developing a non-planar dynamical model of the two pipes coupled with an intermediate spring. A systematic analysis is conducted to evaluate the effects of spring parameters on the non-planar vibration characteristics and buckling behaviors of the coupled system. The nonlinear governing equations are derived with Hamilton's principle,subsequently discretized through Galerkin's method, and finally numerically solved by the Runge-Kutta algorithm. Based on the linearized equations, an eigenvalue analysis is performed to obtain the coupled frequencies, modal shapes, and critical flow velocities for buckling instability. Quantitative assessments further elucidate the effects of the spring position and stiffness coefficient on the coupled frequencies and critical flow velocities.Nonlinear dynamic analyses reveal the evolution of buckling patterns and bifurcation behaviors between the lateral displacements of the two pipes and the flow velocity. Numerical results indicate that the intermediate spring increases the susceptibility to buckling instability in the out-of-plane direction compared with the in-plane direction. Furthermore, synchronized lateral displacements emerge in both pipes when the flow velocity of one pipe exceeds the critical threshold. This work is expected to provide a theoretical foundation for the stability assessment and vibration analysis in coupled fluid-conveying pipe systems.
基金Supported by the National Natural Science Foundation of China under Grant No 11372346
文摘A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pipe is calculated considering the structural-acoustic coupling. The results show that longitudinal vibration band gaps and acoustic band gaps can coexist in the fluid-filled periodic pipe. The formation of the band gap mechanism is further analyzed. The band gaps are validated by the sound transmission loss and vibration-frequency response functions calculated using the finite element method. The effect of the damp on the band gap is analyzed by calculating the complex band structure. The periodic pipe system can be used not only in the field of vibration reduction but also for noise elimination.
基金supported by the Engineering Research Centre for Digital Grid Technology for Coordinating New Energy under Grant[Grant number 2021GCZX003]Yunnan Fundamental Research Projects under Grant[Grant number 202301CF070031]+2 种基金Hundred Talents Project 2023 under Grant[Grant number B0201001]2024 Distinctive Innovation Scientific Research Projects for Higher Education Institutions[Grant number 2024KTSCX157]Young Innovative Talent Project under Grant[Grant numbers K0223021,K0224014].
文摘Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety.
基金financially supported by the National Natural Science Foundation of China (No.51001100)
文摘The influence of Mo addition on the microstructure and properties of TiNiNb alloy with 4.5 at.% Nb has been investigated systemically. The experimental results indicated that the uniform distribution of Mo depresses the appearance of coarse 13-Nb particles at the grain boundaries and short stripped texture consisting of abundant fine disperse Nb-rich particles appears around the grain boundaries. The yield strength of the alloy was enhanced from 450 to 600 MPa due to the solution strengthening of Nb and Mo and the elongation reached 18% when the Mo content is 0.5 at.%. At the same time, the shape memory effect of the alloy also is improved significantly by the Mo addition. The maximum recoverable strain of the alloy with 0.5 at.% Mo is near 8% and has reached the high level of Ni-Ti binary alloys. This novel high- strength alloy is promising to be used for high pressure tube and the macro-scale coupling with higher-quality requirements.