In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on...In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.展开更多
A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the ...A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the synchronous error among adjacent motors simultaneously. In the strategy, due to non-linear effects of the two mentioned errors to the motion control of motor i, an adaptive fuzzy logic controller is designed to decide the control variable of the motor drive system. The multi-motor drive system is modeled and simulated by SIMULINK. The simulated researches show that the proposed strategy improves the synchronization, stabilization, and convergence of the multi-motor system.展开更多
Considering the special characteristics of the redundant parallel manipulator, with emphasis on the variable of structure, the relatively small workspace and the strong coupling relationship among arms, a synchronizat...Considering the special characteristics of the redundant parallel manipulator, with emphasis on the variable of structure, the relatively small workspace and the strong coupling relationship among arms, a synchronization control strategy is presented in this paper. Since in the feedforward, the inertial and the coriolis matrix are designed constant according to the relatively small workspace, position measurement of the endeffector in plane is ignored. Synchronization error and coupling error are introduced to reject the model errors of inertial and coriolis matrix as stated above. Using the method, the errors of driving arms can be reduced, and the synchronization performance among axes can be improved. The stability of the controllers was proved by Lyapunov method. Finally, experimental results show the feasibility of the method.展开更多
基金Project(2015AA043003)supported by National High-technology Research and Development Program of ChinaProject(GY2016ZB0068)supported by Application Technology Research and Development Program of Heilongjiang Province,ChinaProject(SKLR201301A03)supported by Self-planned Task of State Key Laboratory of Robotics and System(Harbin Institute of Technology),China
文摘In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.
基金National Natural Science Foundation of China (No.60774023)
文摘A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the synchronous error among adjacent motors simultaneously. In the strategy, due to non-linear effects of the two mentioned errors to the motion control of motor i, an adaptive fuzzy logic controller is designed to decide the control variable of the motor drive system. The multi-motor drive system is modeled and simulated by SIMULINK. The simulated researches show that the proposed strategy improves the synchronization, stabilization, and convergence of the multi-motor system.
基金supported by the Natural Science Foundation of China under Grant No.50775170 and 50805111by Xidian University under Grant No.JY10000904011 and JY10000904006
文摘Considering the special characteristics of the redundant parallel manipulator, with emphasis on the variable of structure, the relatively small workspace and the strong coupling relationship among arms, a synchronization control strategy is presented in this paper. Since in the feedforward, the inertial and the coriolis matrix are designed constant according to the relatively small workspace, position measurement of the endeffector in plane is ignored. Synchronization error and coupling error are introduced to reject the model errors of inertial and coriolis matrix as stated above. Using the method, the errors of driving arms can be reduced, and the synchronization performance among axes can be improved. The stability of the controllers was proved by Lyapunov method. Finally, experimental results show the feasibility of the method.