期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
A proposal for the theoretical analysis of the interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations 被引量:43
1
作者 FANG Chuanglin ZHOU Chenghu +2 位作者 GU Chaolin CHEN Liding LI Shuangcheng 《Journal of Geographical Sciences》 SCIE CSCD 2017年第12期1431-1449,共19页
Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China.... Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China. However, the development of mega-urban agglomerations has triggered the interactive coercion between resources and the eco-envi- ronment. The interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations represent frontier and high-priority research topics in the field of Earth system science over the next decade. In this paper, we carried out systematic theo- retical analysis of the interactive coupling mechanisms and coercing effects between ur- banization and the eco-environment in mega-urban agglomerations. In detail, we analyzed the nonlinear-coupled relationships and the coupling characteristics between natural and human elements in mega-urban agglomerations. We also investigated the interactive coercion intensities between internal and external elements, and the mechanisms and patterns of local couplings and telecouplings in mega-urban agglomeration systems, which are affected by key internal and external control elements. In addition, we proposed the interactive coupling theory on urbanization and the eco-environment in mega-urban agglomerations. Furthermore we established a spatiotemporal dynamic coupling model with multi-element, multi-scale, multi-scenario, multi-module and multi-agent integrations, which can be used to develop an intelligent decision support system for sustainable development of mega-urban agglomera- tions. In general, our research may provide theoretical guidance and method support to solve problems related to mega-urban agglomerations and maintain their sustainable development. 展开更多
关键词 mega-urban agglomeration URBANIZATION ECO-ENVIRONMENT interactive coupled effects coupling theory process of theoretical analysis
原文传递
THE COUPLED EFFECTS OF MECHANICAL DEFORMATION AND ELECTRONIC PROPERTIES IN CARBON NANOTUBES 被引量:6
2
作者 郭万林 郭宇锋 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第2期192-198,共7页
Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can ... Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics.It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes.The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube.Pure external applied load has little effect on charge distribution,but indeed influences the energy gap.Tensile load leads to a narrower energy gap and compressive load increases the gap.When the CNT is tensioned under an external electric field,the effect of mechanical load on the electronic structures of the CNT becomes significant,and the applied electric field may reduce the critical mechanical tension load remarkably.Size effects are also discussed. 展开更多
关键词 quantum mechanics quantum-molecular dynamics single-walled carbon nanotube coupled effect mechanical-electronic property
在线阅读 下载PDF
An enhanced numerical model for considering coupled strainsoftening and seepage effects on rock masses surrounding a submarine tunnel
3
作者 Lan Cui Wenyu Yang +4 位作者 Qian Sheng Junjie Zheng Wengang Zhang Kai Guan Fei Song 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1445-1458,共14页
The seepage of groundwater and the strain-softening of rock mass in a submarine tunnel expand the plastic region of rock,thereby affecting its overall stability.It is therefore essential to study the stress and strain... The seepage of groundwater and the strain-softening of rock mass in a submarine tunnel expand the plastic region of rock,thereby affecting its overall stability.It is therefore essential to study the stress and strain fields in the rocks surrounding the submarine tunnel by considering the coupled effect of strainsoftening and seepage.However,the evolution equation for the hydro-mechanical parameters in the existing fully coupled solution is a uniform equation that is unable to reproduce the characteristics of rock mass in practice.In this study,an updated numerical procedure for the submarine tunnel is derived by coupling strain-softening and seepage effect based on the experimental results.According to the hydro-mechanical coupling theory,the hydro-mechanical parameters such as elastic modulus,Poisson's ratio,Biot's coefficient and permeability coefficient of rocks are characterized by the fitting equations derived from the experimental data.Then,the updated numerical procedure is deduced with the governing equations,boundary conditions,seepage equations and fitting equations.The updated numerical procedure is verified accurately compared with the previous analytical solution.By utilizing the updated numerical procedure,the characteristics of stress field and the influences of initial pore water pressure,Biot's coefficient,and permeability coefficient on the stress,displacement and water-inflow of the surrounding rocks are discussed.Regardless of the variations in hydro-mechanical parameters,the stress distribution has a similar trend.The initial permeability coefficient exerts the most significant influence on the stress field.With the increases in initial pore water pressure and Biot's coefficient,the plastic region expands,and the water-inflow and displacement increase accordingly.Given the fact that the stability of the tunnel is more sensitive to the seepage force controlled by the hydraulic parameters,it is suggested to dewater the ground above the submarine tunnel to control the initial pore water pressure. 展开更多
关键词 Seepage force STRAIN-SOFTENING Submarine tunnel Numerical procedure Coupling effect
在线阅读 下载PDF
Numerical Study of Multi-Factor Coupling Effects on Energy Conversion Performance of Nanofluidic Reverse Electrodialysis
4
作者 Hao Li Cunlu Zhao +4 位作者 Jinhui Zhou Jun Zhang Hui Wang Yanmei Jiao Yugang Zhao 《Frontiers in Heat and Mass Transfer》 2025年第2期507-528,共22页
Based on the rapid advancements in nanomaterials and nanotechnology,the Nanofluidic Reverse Electrodialysis(NRED)has attracted significant attention as an innovative and promising energy conversion strategy for extrac... Based on the rapid advancements in nanomaterials and nanotechnology,the Nanofluidic Reverse Electrodialysis(NRED)has attracted significant attention as an innovative and promising energy conversion strategy for extracting sustainable and clean energy fromthe salinity gradient energy.However,the scarcity of research investigating the intricate multi-factor coupling effects on the energy conversion performance,especially the trade-offs between ion selectivity and mass transfer in nanochannels,of NRED poses a great challenge to achieving breakthroughs in energy conversion processes.This numerical study innovatively investigates the multi-factor coupling effect of three critical operational factors,including the nanochannel configuration,the temperature field,and the concentration difference,on the energy conversion processes of NRED.In this work,a dimensionless amplitude parameter s is introduced to emulate the randomly varied wall configuration of nanochannels that inherently occur in practical applications,thereby enhancing the realism and applicability of our analysis.Numerical results reveal that the application of a temperature gradient,which is oriented in opposition to the concentration gradient,enhances the ion transportation and selectivity simultaneously,leading to an enhancement in both output power and energy conversion efficiency.Additionally,the increased fluctuation of the nanochannel wall from s=0 to s=0.08 improves ion selectivity yet raises ion transport resistance,resulting in an enhancement in output power and energy conversion efficiency but a slight reduction in current.Furthermore,with increasing the concentration ratio cH/cL from 10 to 1000,either within a fixed temperature field or at a constant dimensionless amplitude,the maximumpower consistently attains its optimal value at a concentration ratio of 100 but the cation transfer number experiences amonotonic decrease across this entire range of concentration ratios.Finally,uponmodifying the operational parameters fromthe baseline condition of s=0,c_(H)/c_(L)=10,andΔT=0 K to the targetedconditionof s=0.08,c_(H)/c_(L)=50,andΔT=25 K,there is a concerted improvement observed in the open-circuit potential,short-circuit current,andmaximumpower,with respective increments of 8.86%,204.97%,and 232.01%,but a reduction in cation transfer number with a notable decrease of 15.37%. 展开更多
关键词 Salinity gradient energy nanofluidic reverse electrodialysis energy conversion nanochannel configuration multi-factor coupling effect
在线阅读 下载PDF
Experimental study on coupled caloric effect driven by dual fields in metamagnetic alloy ErCo_(2)
5
作者 Liming Wu Bingjie Wang +11 位作者 Fengxia Hu Zhaojun Mo Houbo Zhou Zhengying Tian Yangyang Fan Zhuo Yin Zibing Yu Jing Wang Yunzhong Chen Jirong Sun Tongyun Zhao Baogen Shen 《Journal of Rare Earths》 2025年第4期752-757,I0005,共7页
This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under d... This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under different pressures,revealing that the application of hydrostatic pressure stabilizes a small volume of paramagnetism(PM) phase,resulting in a shift of the phase transition temperature towards the low-temperature region.This shift is opposite to the temperature associated with the magnetic field-driven phase transition.As pressure increases,the metamagnetic transition in ErCo_(2) is suppressed,and the hysteresis disappears.However,the produced cross-coupling caloric effect compensates the decrease in entropy change caused by the disappearance of the metamagnetic transition.As a result,a reversible giant magnetocaloric effect of 46.2 J/(kg·K) without hysteresis is achieved at a pressure of 0.910 GPa.Moreover,we propose that the temperature span of ErCo_(2) can be significantly widened by optimizing the thermodynamic pathway of the magnetic and pressure fields,overcoming the defect of a narrow temperature range. 展开更多
关键词 Rare earths Magnetocaloric materials coupled caloric effect Metamagnetic behavior Dual fields Magnetic-structure coupling
原文传递
Optimized reinforcement of granite residual soil using a cement and alkaline solution: A coupling effect 被引量:1
6
作者 Bingxiang Yuan Jingkang Liang +5 位作者 Baifa Zhang Weijie Chen Xianlun Huang Qingyu Huang Yun Li Peng Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期509-523,共15页
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re... Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance. 展开更多
关键词 Granite residue soil(GRS) REINFORCEMENT Coupling effect Alkali activation Mechanical properties
在线阅读 下载PDF
Rapid simulation and phase distortion evaluation of thermal blooming effect in internal laser propagation channels
7
作者 WU Dong-yu LI Xiang +4 位作者 LI Jia-sheng GAO Liang SONG Yan-song WANG Si DONG Ke-yan 《中国光学(中英文)》 北大核心 2025年第3期520-534,共15页
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura... During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect. 展开更多
关键词 high-power laser thermal blooming effect beam phase numerical simulation thermal coupling effect beam control system
在线阅读 下载PDF
Coupling effect of size and strain rate on uniaxial compressive properties of coral reef limestone
8
作者 Hongya Li Linjian Ma +3 位作者 Mingyang Wang Jiawen Wu Jiajun Deng Zeng Li 《International Journal of Mining Science and Technology》 2025年第11期1905-1919,共15页
As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To... As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To investigate the mechanical behaviour of coral reef limestone under the coupling impact of size and strain rate,the uniaxial compression tests were conducted on reef limestone samples with length-to-diameter(L/D)ratio ranging from 0.5 to 2.0 at strain rate ranging from 10^(−5)·s^(−1)to 10^(−2)·s^(−1).It is revealed that the uniaxial compressive strength(UCS)and residual compressive strength(RCS)of coral reef limestone exhibits a decreasing trend with L/D ratio increasing.The dynamic increase factor(DIF)of UCS is linearly correlated with the logarithm of strain rate,while increasing the L/D ratio further enhances the DIF.The elastic modulus increases with strain rate or L/D ratio increasing,whereas the Poisson’s ratio approximates to a constant value of 0.24.The failure strain increases with strain rate increasing or L/D ratio decreasing,while the increase in L/D ratio will inhibit the enhancing effect of the strain rate.The high porosity and low mineral strength are the primary factors contributing to a high RCS of 16.7%–64.9%of UCS,a lower brittleness index and multiple irregular fracture planes.The failure pattern of coral reef limestone transits from the shear-dominated to the splitting-dominated failure with strain rate increasing or L/D ratio decreasing,which is mainly governed by the constrained zones induced by end friction and the strain rate-dependent crack propagation.Moreover,a predictive formula incorporating coupling effect of size and strain rate for the UCS of reef limestone was established and verified to effectively capture the trend of UCS. 展开更多
关键词 Coral reef limestone Strain rate SIZE Failure mode Coupling effect
在线阅读 下载PDF
A CFD-MBD Co-Simulation Approach for Studying Aerodynamic Characteristics and Dynamic Performance of High-Speed Trains
9
作者 Yanlin Hu Qinghua Chen +4 位作者 Xin Ge Wentao He Haowei Yu Liang Ling Kaiyun Wang 《Chinese Journal of Mechanical Engineering》 2025年第5期408-424,共17页
The interaction between the airflow and train influences the aerodynamic characteristics and dynamic performance of high-speed trains.This study focused on the fluid-solid coupling effect of airflow and HST,and propos... The interaction between the airflow and train influences the aerodynamic characteristics and dynamic performance of high-speed trains.This study focused on the fluid-solid coupling effect of airflow and HST,and proposed a co-simulation(CS)approach between computational fluid dynamics and multi-body dynamics.Firstly,the aerodynamic model was developed by employing overset mesh technology and the finite volume method,and the detailed train-track coupled dynamic model was established.Then the User Data Protocol was adopted to build data communication channels.Moreover,the proposed CS method was validated by comparison with a reported field test result.Finally,a case study of the HST exiting a tunnel subjected to crosswind was conducted to compare differences between CS and offline simulation(OS)methods.In terms of the presented case,the changing trends of aerodynamic forces and car-body displacements calculated by the two methods were similar.Differences mainly lie in aerodynamic moments and transient wheel-rail impacts.Maximum pitching and yawing moments on the head vehicle in the two methods differ by 21.1 kN∙m and 29.6 kN∙m,respectively.And wheel-rail impacts caused by sudden changes in aerodynamic loads are significantly severer in CS.Wheel-rail safety indices obtained by CS are slightly greater than those by OS.This research proposes a CS method for aerodynamic characteristics and dynamic performance of the HST in complex scenarios,which has superiority in computational efficiency and stability. 展开更多
关键词 Co-simulation method High-speed train Fluid-structure coupling effect Dynamic performance Aerodynamic characteristics
在线阅读 下载PDF
Electronic coupling effect optimized FeOOH nanosheets to enable high-performance Ni-Fe battery
10
作者 Fan Yang Ruiwang Zhang +2 位作者 Xunwei Ji Shiwei Lin Xihong Lu 《Journal of Materials Science & Technology》 2025年第24期315-321,共7页
Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from... Aqueous rechargeable Ni-Fe batteries exhibit unique advantages in large-scale energy storage thanks to their affordability,safety,and reliability.However,their limited energy density and Coulombic efficiency stem from unfavorable OH^(−)adsorption capability and low electrochemical activity of Fe sites,result in electrode kinetic delays for Fe anodes.Here,we report Mn and S co-modified FeOOH(MSFF)nanosheets as an advanced anode in Ni-Fe batteries,synthesized from a facile one-step surface-redox-etching method at room temperature.Based on the strong electronic coupling effect between Mn and S atoms,such MSFF anode presents fast electron transport capability,enhanced OH^(−)-adsorption capability,and redox reactivity.Specifically,the MSFF anode can achieve a high areal capacity of 2 mAh cm^(−2)at 10 mA cm^(−2),which retains a staggering 96%of the initial capacity after undergoing 9000 cycles at a higher current density of 30 mA cm^(−2).In addition,the assembled Ni-Fe battery can provide a capacity of 0.85 mAh cm^(−2)at 16 mA cm^(−2),significantly outperforming most recently reported aqueous rechargeable batteries.This work may offer an innovative and feasible approach for modulating the local electronic structure of high-performance Ni-Fe battery electrode materials. 展开更多
关键词 Electronic coupling effect Mn S co-modified FeOOH Fe anode Ni-Fe battery
原文传递
Level-Set-Based Topology Optimization of a Geometrically Nonlinear Structure Considering Thermo-mechanical Coupling Effect
11
作者 Sujun Wang An Xu Ruohong Zhao 《Acta Mechanica Solida Sinica》 2025年第1期100-114,共15页
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin... This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings. 展开更多
关键词 Topology optimization Geometric nonlinearity Thermo-mechanical coupling effect Level set method Multiple constraints
原文传递
Efficient carbon integration of CO_(2)in propane aromatization over acidic zeolites
12
作者 Cheng Li Xudong Fang +7 位作者 Bin Li Siyang Yan Zhiyang Chen Leilei Yang Shaowen Hao Hongchao Liu Jiaxu Liu Wenliang Zhu 《Chinese Journal of Catalysis》 2025年第5期314-322,共9页
Direct converting carbon dioxide(CO_(2))and propane(C_(3)H_(8))into aromatics with high carbon utilization offers a desirable opportunity to simultaneously mitigate CO_(2)emission and adequately utilize C_(3)H_(8) in ... Direct converting carbon dioxide(CO_(2))and propane(C_(3)H_(8))into aromatics with high carbon utilization offers a desirable opportunity to simultaneously mitigate CO_(2)emission and adequately utilize C_(3)H_(8) in shale gas.Owing to their thermodynamic resistance,converting CO_(2)and C_(3)H_(8) respectively remains difficult.Here,we achieve 60.2%aromatics selectivity and 48.8%propane conversion over H-ZSM-5-25 via a zeolite-catalyzing the coupling of CO_(2)and C_(3)H_(8).Operando dual-beam FTIR spectroscopy combined with ^(13)C-labeled CO_(2)tracing experiments revealed that CO_(2)is directly involved in the generation of aromatics,with its carbon atoms selectively embedded into the aromatic ring,bypassing the reverse water-gas shift pathway.Accordingly,a cooperative aromatization mechanism is proposed.Thereinto,lactones,produced from CO_(2)and olefins,are proven to be the key intermediate.This work not only provides an opportunity for simultaneous conversion of CO_(2)and C_(3)H_(8),but also expends coupling strategy designing of CO_(2)and alkanes over acidic zeolites. 展开更多
关键词 CO_(2)utilization Propane aromatization Coupling effect Acidic zeolites LACTONE
在线阅读 下载PDF
True triaxial modeling test of high-sidewall underground caverns subjected to dynamic disturbances
13
作者 Chuanqing Zhang Jinping Ye +3 位作者 Ning Liu Qiming Xie Mingming Hu Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2109-2132,共24页
Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessm... Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessment of the operational safety of such caverns requires an in-depth understanding of the response characteristics of the rock mass subjected to dynamic disturbances.To address this issue,we conducted true triaxial modeling tests and dynamic numerical simulations on large underground caverns to investigate the impact of static stress levels,dynamic load parameters,and input directions on the response characteristics of the surrounding rock mass.The findings reveal that:(1)When subjected to identical incident stress waves and static loads,the surrounding rock mass exhibits the greatest stress response during horizontal incidence.When the incident direction is fixed,the mechanical response is more pronounced at the cavern wall parallel to the direction of dynamic loading.(2)A high initial static stress level specifically enhances the impact of dynamic loading.(3)The response of the surrounding rock mass is directly linked to the amplitude of the incident stress wave.High amplitude results in tensile damage in regions experiencing tensile stress concentration under static loading and shear damage in regions experiencing compressive stress concentration.These results have significant implications for the evaluation and prevention of dynamic disasters in the surrounding rock of underground caverns experiencing dynamic disturbances. 展开更多
关键词 High-sidewall underground cavern Modeling test Coupling effect of dynamic and static loads Incident wave Response characteristics Risk coefficient
在线阅读 下载PDF
Graphene-Based Phthalocyanine-Assembled Synergistic Fe-Co-Ni Trimetallic Single-Atomic Bifunctional Electrocatalysts by Rational Design for Boosting Oxygen Reduction/Evolution Reactions
14
作者 Yujun Wu Shaobing Tang +7 位作者 Wenbo Shi Zhaoyu Ning Xingke Du Cunling Ye Zhengyu Bai Wei Shuang Qing Zhang Lin Yang 《Carbon Energy》 2025年第9期114-126,共13页
Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains... Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains a great challenge to avoid the inhomogeneous distribution and aggregation of metal single-atomic active centers in the construction of bifunctional electrocatalysts with atomically dispersed multimetallic sites because of the common calcination method.Herein,we report a novel catalyst with phthalocyanine-assembled Fe-Co-Ni single-atomic triple sites dispersed on sulfur-doped graphene using a simple ultrasonic procedure without calcination,and X-ray absorption fine structure(XAFS),aberration-corrected scanning transmission electron microscopy(AC-STEM),and other detailed characterizations are performed to demonstrate the successful synthesis.The novel catalyst shows extraordinary bifunctional ORR/OER activities with a fairly low potential difference(ΔE=0.621 V)between the OER overpotential(Ej10=315 mV at 10 m A cm^(-2))and the ORR half-wave potential(Ehalf-wave=0.924 V).Moreover,the above catalyst shows excellent ZAB performance,with an outstanding specific capacity(786 mAh g^(-1)),noteworthy maximum power density(139 mW cm^(-2)),and extraordinary rechargeability(discharged and charged at 5 mA cm^(-2) for more than 1000 h).Theoretical calculations reveal the vital importance of the preferable synergetic coupling effect between adjacent active sites in the Fe-Co-Ni trimetallic single-atomic sites during the ORR/OER processes.This study provides a new avenue for the investigation of bifunctional electrocatalysts with atomically dispersed trimetallic sites,which is intended for enhancing the ORR/OER performance in ZABs. 展开更多
关键词 bifunctional electrocatalysts Fe-Co-Ni trimetallic single-atomic sites oxygen evolution reaction oxygen reduction reaction synergetic coupling effect
在线阅读 下载PDF
Coupling Lattice Strain and Sulfur Vacancy in Tin Monosulfide/Reduced Graphene Oxide Composite for High-Performance Sodium-Ion Storage
15
作者 Yitong Jiang Yihong Zheng +8 位作者 Lijuan Tong Kun Zuo Mulan Tu Shihong Chen Xiaochuan Chen Junxiong Wu Qinghua Chen Xiaoyan Li Yuming Chen 《Energy & Environmental Materials》 2025年第4期87-94,共8页
Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode mate... Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability.Herein,we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance.Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid(de)intercalation near the surface/edge of the material,thereby enhancing its pseudocapacitive sodium storage properties.Consequently,the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g^(-1) at 1 A g^(-1) and an outstanding rate capability of 450.60 mAh g^(-1) at 3 A g^(-1).This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering. 展开更多
关键词 coupling effects lattice strain sodium-ion batteries sulfur defects tin monosulfide/reduced graphene oxide composites
在线阅读 下载PDF
Seismic interaction and improved design method of substation equipment with multiple electrical configurations
16
作者 Guo-Dai Enrui Fu Xing +2 位作者 Li Gang Li Hongnan Ren Liang 《Earthquake Engineering and Engineering Vibration》 2025年第2期565-581,共17页
A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To addres... A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To address this issue,this study investigates the seismic interaction of substation equipment with multiple electrical configurations and proposes an improved seismic design method.First,the concept of the coupling coefficient is introduced,which is used to improve the Newmark-βmethod and response spectrum method for the seismic design of standalone equipment.Then,the finite element models of a substation system with multiple configurations are established,and the vibration characteristics and seismic responses of the interconnected equipment are investigated.Finally,the coupling coefficients are obtained by kernel density estimation of the response results under twenty seismic ground motions,and the effectiveness of the proposed method is verified through two numerical examples.The results show that the frequency coupling coefficients vary from 0.69 to 1.42,while the seismic action coupling coefficient has a wider range,changing from 1.04 to 3.91.The coupling effect amplifies the seismic response of higher-frequency equipment,and the amplification degree varies among different configurations for the same type of equipment. 展开更多
关键词 substation system multiple configurations coupling effect seismic response
在线阅读 下载PDF
Exciton Dynamics in Edge-on ZnPc–F_(8)ZnPc System:Insights from Quantum Simulations
17
作者 Qiuyue Ge Xunkun Huang +2 位作者 Yuchuan Xu Wanzhen Liang Yi Zhao 《Chinese Journal of Chemical Physics》 2025年第4期401-414,I0001-I0020,I0104,共35页
Focusing on the mechanism of interfa-cial exciton dissociation in edge-on stacked ZnPc-F_(8)ZnPc aggregate,we employ the fragment particle-hole densities(FPHD)method to con-struct the Hamiltonian of diabatic states an... Focusing on the mechanism of interfa-cial exciton dissociation in edge-on stacked ZnPc-F_(8)ZnPc aggregate,we employ the fragment particle-hole densities(FPHD)method to con-struct the Hamiltonian of diabatic states and use the non-Markovian stochastic Schrödinger equation(NMSSE)to simulate the photo-in-duced dynamics processes.The re-sults show that aggregation effects have a significant impact on the interfacial exciton dissociation process.After photo-excita-tion,the excitons first preferentially delocalize and perform the charge transfer(CT)states in the pure ZnPc or F_(8)ZnPc aggregates within 100 fs.These‘intramolecular’CT states can easi-ly evolve into interfacial CT states by hopping electrons and holes in the intramolecular CT states across the interface.Compared with these exciton dissociation processes,the direct ex-citon dissociation into interfacial CT state is relatively slow due to the small electronic cou-pling and vibrational coherence between the locally excited state and the interfacial CT state.As the temperature rises and the vibronic coherence weakens,the direct dissociation rates are significantly enhanced.This investigation provides valuable insights for the design and opti-mization of high-performance organic photovoltaic devices. 展开更多
关键词 ZnPc–F_(8)ZnPc Exciton dynamics Coherence effects Vibronic coupling effects
在线阅读 下载PDF
Cavity-Enhanced Rydberg Atom Microwave Receiver
18
作者 Bang Liu Li-Hua Zhang +11 位作者 Qi-Feng Wang Yu Ma Tian-Yu Han Zong-Kai Liu Zheng-Yuan Zhang Shi-Yao Shao Jun Zhang Qing Li Han-Chao Chen Yu-Long Han Dong-Sheng Ding Bao-Sen Shi 《Chinese Physics Letters》 2025年第5期7-11,共5页
Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electri... Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electric field in the sensing process is a challenging problem that greatly impacts the sensitivity. To address this, we propose using a microwave resonant cavity to enhance the effective coupling between the Rydberg atoms and the microwave electric field. In our experiment, Rydberg atoms are prepared via a three-photon excitation scheme, and the electric fields are measured without and with a microwave cavity in which the vapor cell is placed inside, respectively. As a result, we achieved an 18 dB enhancement of power sensitivity by adding the cavity,which is an effective enhancement in electric field pulse signal detection. This experimental testing provides a promising direction for enhancing the sensitivity of Rydberg atomic electric field sensors and paves the way for their application in precision electric field measurements. 展开更多
关键词 rydberg atoms enhance effective coupling microwave electric field cavity enhanced microwave electric field sensing sensing process microwave resonant cavity Rydberg atoms
原文传递
Production of the massless dark photon γ associated with the photon γ from charged lepton flavor violating decay processes
19
作者 Si Li Chong-Xing Yue +1 位作者 Xue-Jia Cheng Yang-Yang Bu 《Communications in Theoretical Physics》 2025年第6期129-132,共4页
The massless dark photon~γ can only interact with the Standard Model(SM)sector via higherdimensional operators.In this letter,we investigate its production associated with the ordinary photonγfrom the lepton flavor ... The massless dark photon~γ can only interact with the Standard Model(SM)sector via higherdimensional operators.In this letter,we investigate its production associated with the ordinary photonγfrom the lepton flavor violation(LFV)process l_(i)→l_(j)γγ and di-production from the LFV process l_(i)→l_(j)γγ induced by dipole operators.Comparing the obtained numerical results with the corresponding experimental measurements,we obtain the constraints on the effective couplings of γ with the SM charged leptons.The upper limit of the effective coupling|DLμe|2+|DRμe|2coming from the process μ→e~γγis looser than the processμ→eγ by about one order of magnitude. 展开更多
关键词 massless dark photon lepton flavor violation process effective couplings
原文传递
Crust-Mantle Structure and Coupling Effects on Mineralization : An Example from Jiaodong Gold Ore Deposits Concentrating Area, China 被引量:17
20
作者 YangLiqiang DengJun +2 位作者 ZhangZhongjie WangGuangjie WangJianping 《Journal of China University of Geosciences》 SCIE CSCD 2003年第1期42-51,共10页
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info... Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system . 展开更多
关键词 geophysical field crust mantle structure coupling effect dynamics of mineralization Jiaodong area of China.
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部