期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
广义路余代数和广义对偶Gabriel定理 被引量:2
1
作者 李方 刘公祥 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第5期853-862,共10页
通过将箭图的每个顶点放置一个k-余代数,首先引进了广义路余代数的概念,其次给出了广义路余代数的一些基本性质,还讨论了同构问题.证明了两个正规广义路余代数是同构的当且仅当他们的箭图及对应顶点上的单余代数是同构的.对于满足Codim ... 通过将箭图的每个顶点放置一个k-余代数,首先引进了广义路余代数的概念,其次给出了广义路余代数的一些基本性质,还讨论了同构问题.证明了两个正规广义路余代数是同构的当且仅当他们的箭图及对应顶点上的单余代数是同构的.对于满足Codim C_0■1余代数C,证明了对偶Wedderburn-Malcev定理成立.作为广义路余代数的一个应用,推广了点余代数的对偶Gabriel定理. 展开更多
关键词 广义路余代数 余张量余代数 对偶Gabriel定理
原文传递
Dual Gabriel theorem with applications 被引量:6
2
作者 CHEN Xiaowu, HUANG Hualin & ZHANG Pu Department of Mathematics, University of Science and Technology of China, Hefei 230026, China USTC Shanghai Institute for Advanced Studies, Shanghai 201315, China +1 位作者 Mathematical Section, the Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, China 《Science China Mathematics》 SCIE 2006年第1期9-26,共18页
We introduce the quiver of a bicomodule over a cosemisimple coalgebra. Applying this to the coradical C0 of an arbitrary coalgebra C, we give an alternative definition of the Gabriel quiver of C, and then show that it... We introduce the quiver of a bicomodule over a cosemisimple coalgebra. Applying this to the coradical C0 of an arbitrary coalgebra C, we give an alternative definition of the Gabriel quiver of C, and then show that it coincides with the known Ext quiver of C and the link quiver of C. The dual Gabriel theorem for a coalgebra with a separable coradical is obtained, which generalizes the corresponding result for a pointed coalgebra. We also give a new description of C1 = C0 ∧C C0 of any coalgebra C, which can be regarded as a generalization of the first part of the well-known Taft-Wilson Theorem for pointed coal-gebras. As applications, we give a characterization of locally finite coalgebras via their Gabriel quivers, and a property of the Gabriel quiver of a quasi-coFrobenius coalgebra. 展开更多
关键词 quivers cotensor coalgebra quasi-coFrobenius coalgebra.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部