期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Observation of activation status of motor-related cortex of patients with acute ischemic stroke through functional magnetic resonance imaging 被引量:1
1
作者 Ziqian Chen Hui Xiao +6 位作者 Ping Ni Gennian Qian Shangwen Xu Xizhang Yang Youqiang Ye Jinhua Chen Biyun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期221-225,共5页
BACKGROUND: About more than three fourth of patients with stroke have motor dysfunction at different degrees, especially hand motor dysfunction. Functional magnetic resonance imaging (fMRI) provides very reliable v... BACKGROUND: About more than three fourth of patients with stroke have motor dysfunction at different degrees, especially hand motor dysfunction. Functional magnetic resonance imaging (fMRI) provides very reliable visible evidence for studying central mechanism of motor dysfunction after stroke, and has guiding and applicable value for clinical therapy. OBJECTIVE: To observe the activation of motor-related cortex of patients with acute ischemic stroke with functional magnetic resonance imaging, and analyze the relationship between brain function reconstruction and motor restoration after stroke. DESIGN : A contrast observation SETTING: Medical Imaging Center, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA. PARTICIPANTS : Nine patients with acute ischemic stroke who suffered from motor dysfunction and received the treatment in the Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December 2005 were recruited, serving as experimental group. The involved patients including 5 male and 4 female, aged 16 to 87 years, all met the diagnostic criteria of cerebrovascular disease revised by The Fourth National Conference on Cerebrovascular Disease, mainly presenting paralysis in clinic, and underwent fMRI. Another 9 right handed persons matched in age and gender who simultaneously received healthy body examination were recruited, serving as control group. All the subjects were informed of the detected items. METHODS : ①Muscular strength of patients of the experimental group was evaluated according to Brunnstrom grading muscular strength (Grade Ⅰ -Ⅳ). ②Passive finger to finger motion was used as the mission (alternate style of quiescence, left hand motion and quiescence, nght hand motion was repeated 3 times, serving as 1 sequence, 20 s per block and 20 s time interval. The whole process of scanning was 260 s), and subjects of 2 groups were given Bold-fMRI examination with GEl .5T double gradient 16-channel magnetic resonance imaging system. All the data were given off-line management, and fMRI was treated with SPM2 softwere. The activation of passive finger-to-finger motion-related cortex of subjects in 2 groups was observed. ③ Results of fMRI of subjects in 2 groups were compared. The size of activation region of brain and signal intensity were measured and unilateral index was calculated. The data of activation region of cerebral hemisphere of different sides at finger motion were given statistical analysis of unilateral index. Differences among unilateral indexes at hand motion were compared between intact and affected hands of patients in experimental group. The relationship between unilateral index and muscular strength of affected hands at affected hand motion in patients of the experimental group was performed Spearman correlation analysis. MAIN OUTCOME MEASURES: ① The activation of motion-related cortex passive finger-to-finger motion between handedness and non-handedness was detected with functional magnetic resonance imaging of subjects in 2 groups. ②Relationship between unilateral index and muscular strength of subjects of experimental group at affected hand motion. RESULTS: Nine patients with ischemic stroke and 9 controls all participated in the final result analysis. ① Passive fMRI detection results between handedness and non-handedness of controls: Right-handed finger-to-finger motion of subjects of control group mainly activated contralateral sensonmotor cortex, and left-handed finger-to-finger motion not only activated above-mentioned brain region, but also activated supplementary motor area (SMA) of contralateral brain region; ②In the experimental group, sensorimotor cortex of contralateral hemisphere was activated at affected hand motion, and homolateral posterior parietal cortex (PPC)was also obviously activated. Bilateral sensonmotor cortex was activated at affected hand motion in 2 patients, and homolateral activation area was larger than contralateral one. At intact hand motion, contralateral sensorimotor cortex was activated, but no obvious homolateral activation area was found. ③ Correlation of unilateral index with muscular strength: Passive finger-to-finger fMRI ( between affected and intact hands of subjects of experimental group: Unilateral index at passive single finger motion of affected and intact hand of subjects of experimental group was -0.018±0.01 and 0.319±0.187, respectively, with significant difference (t=4.059, P 〈 0.01 ). Unilateral index was significantly positively correlated with the muscular strength of affected hand at affected hand motion(r=0.834, P 〈 0.05).CONCLUSION : ①fMRI can objectively shows different activation states of motor cortex between patients with ischemic stroke and healthy controls, and brain functional compensation and recombination exist. Both primary sensorimotor cortex and SMA of bilateral hemispheres participant in affected hand motion, at the same time, parietal lobe and cortex of intact side also obviously participant in the affected hand motion. ②Correlation analysis of unilateral index and muscular strength of affected hand performed through fMRI can be used as an effective means to investigate the relationship between motion rehabilitation and brain functional recombination after stroke. 展开更多
关键词 Observation of activation status of motor-related cortex of patients with acute ischemic stroke through functional magnetic resonance imaging FOV
暂未订购
MOTOR CORTEX NETWORKS IN STROKE PATIENTS DURING RECOVERY WITH fMRI 被引量:3
2
作者 郝冬梅 秦文 +2 位作者 于春水 董会卿 刘楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期55-61,共7页
To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left ... To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left hemispheres are recruited. Functional magnetic resonance imaging (fMRI) is performed in the second, fourth, eighth, and sixteenth weeks after the stroke. Images are analyzed using the professional software SPM5 to obtain the bilateral activation of the motor cortex in left and right handgrip tests. MCN data are extracted from the active areas, and the structural and functional characteristic parameters are computed to indicate the connectivity of the network. Results show that the ipsilesional hemisphere recruits more areas with less active extent during the handgrip test, compared with the contralesional hemisphere. MCN shows a higher overall degree of statistical independence and more statistical dependence among motor areas with the gradual recovery. It can help physicians understand the recovery mechanism. 展开更多
关键词 BRAIN RECOVERY STROKE motor cortex network functional magnetic resonance imaging (fMRI)
暂未订购
Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses 被引量:4
3
作者 Bing-bing Guo Xiao-lin Zheng +4 位作者 Zhen-gang Lu Xing Wang Zheng-qin Yin Wen-sheng Hou Ming Meng 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1622-1627,共6页
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized... Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. 展开更多
关键词 nerve regeneration primary visual cortex electrical stimulation visual cortical prosthesis low resolution vision pixelized image functional magnetic resonance imaging voxel size neural regeneration brain activation pattern
暂未订购
Effects of Electroacupuncture on Hippocampal and Cortical Apoptosis in A Mouse Model of Cerebral Ischemia-reperfusion Injury 被引量:8
4
作者 赵建新 田元祥 +2 位作者 肖红玲 胡满香 陈伟然 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2011年第4期349-355,共7页
Objective: To observe the effects of electroacupuncture on hippocampal and cortical apoptosis in a mouse model of cerebral ischemia-reperfusion injury. Methods: Mouse models established by repeated cerebral ischemia-r... Objective: To observe the effects of electroacupuncture on hippocampal and cortical apoptosis in a mouse model of cerebral ischemia-reperfusion injury. Methods: Mouse models established by repeated cerebral ischemia-reperfusion, followed by electroacupuncture at Shenshu, Geshu, and Baihui points. The control group mice were intragastrically administered Hydergine. On day 1 and 7 post-treatment, hippocampal and cortical apoptosis was detected by terminal-deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL), and apoptosis images in the hippocampal CA1 zone and cortical area were analyzed. Results: In the model group, apoptotic cells were detected one day after treatment and some cellular fibers were disarrayed. By day 7 post-treatment, there was an increase in the number of apoptotic cells in the hippocampal CA1 region. In addition, there were apoptotic cells in the cortical area, the cortical layers were thinner with localized neuronal loss and sieve-like lymphocyte infiltration, as well as glial cell proliferation and visible infarct lesions. However, in the Hydergine and electroacupuncture groups, there was a small number of apoptotic cells. At 7 days post-treatment in the model group, field number, numerical density on area, and surface density were increased. However, in the Hydergine and electroacupuncture groups these parameters were decreased (P<0.01), with a significant difference between the two treatment groups (P<0.01). Conclusion: Electroacupuncture treatment inhibited apoptosis and provided neuroprotection. 展开更多
关键词 electroacupuncture cerebral ischemia-reperfusion hippocampus cortex neurons apoptosis image analysis
原文传递
Image understanding, attention and human early visual cortex
5
作者 Fang FANG Yizhou WANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期85-93,共9页
This paper reviews our recent fMRI and psychophysical finding on: 1) perceived size represen- tation in V1; 2) border ownership representation in V2; and 3) neural processing of partially occluded face. These find... This paper reviews our recent fMRI and psychophysical finding on: 1) perceived size represen- tation in V1; 2) border ownership representation in V2; and 3) neural processing of partially occluded face. These findings demonstrate that the human early vi- sual cortex not only performs local feature analyses, but also contributes significantly to high-level visual computation with assistance of attention-enabled cortical feed- back. Moreover, by taking advantage of recent findings on early visual cortex from neuroscience and cognitive science, we build a biologically plausible attention model that can well predict human scanpaths on natural images. 展开更多
关键词 VISION ATTENTION image understanding early visual cortex
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部