In this paper, we first give the definitions of a crossed left π-H-comodules over a crossed weak Hopf π-algebra H, and show that the category of crossed left π-H-comodules is a monoidal category. Finally, we show t...In this paper, we first give the definitions of a crossed left π-H-comodules over a crossed weak Hopf π-algebra H, and show that the category of crossed left π-H-comodules is a monoidal category. Finally, we show that a family σ = {σα,β: Hα Hβ→ k}α,β∈πof k-linear maps is a coquasitriangular structure of a crossed weak Hopf π-algebra H if and only if the category of crossed left π-H-comodules over H is a braided monoidal category with braiding defined by σ.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK2012736)the Fund of Science and Technology Department of Guizhou Province(Grant No.2014GZ81365)
文摘In this paper, we first give the definitions of a crossed left π-H-comodules over a crossed weak Hopf π-algebra H, and show that the category of crossed left π-H-comodules is a monoidal category. Finally, we show that a family σ = {σα,β: Hα Hβ→ k}α,β∈πof k-linear maps is a coquasitriangular structure of a crossed weak Hopf π-algebra H if and only if the category of crossed left π-H-comodules over H is a braided monoidal category with braiding defined by σ.