A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th...A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.展开更多
Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composit...Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composites were characterized by scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction and Raman spectroscopy, respectively. The effects of graphene contents, applied loads and sliding speeds on the tribological behavior of the composites were investigated. The results indicate that the coefficient of friction of the composites decreases first and then increases with increasing the graphene content. The lowest friction coefficient is achieved in 0.3 wt~ Gr/Cu composite, which decreases by 65% compared to that of pure copper. The coefficient of friction of the composite does not have significant change with increasing the applied load, however, it increases with increasing the sliding speed. The tribological mechanisms of the composite under different conditions were also investigated.展开更多
Effects of rare earth element La on the microstructure of Cumatrix diamond tools were researched under the conditions of variousmaterials components and the process parameters in order to improvematerials properties. ...Effects of rare earth element La on the microstructure of Cumatrix diamond tools were researched under the conditions of variousmaterials components and the process parameters in order to improvematerials properties. SEM, XPS and X-ray were used to investigate thefracture section, microstructure and the element valence inmaterials. The Results shown that the combination of rare earthelement La and transition element Ti is advantageous to the bondingstate Between diamond particles and matrix, so it can improve thematerials properties. Suitable sintering temperature is 790 deg. C.展开更多
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e...Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.展开更多
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was...Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.展开更多
A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature ...A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature performances was studied from macro and micro perspectives,respectively.The hybrid of dual-scale particles can make the strain distribution of the composite at the early deformation stage more uniform and delay the strain concentration caused by the HfB_(2) particle.The dislocation pinning of HfB_(2) particles and the coherent strengthening of Cu_(5) Hf nanoprecipitates simultaneously play a strengthening role,but the strength of the hybrid composite is not a simple superposition of two strengthening mod-els.In addition,both Cu_(5) Hf nanoprecipitates and HfB_(2) microparticles contribute to the high-temperature performance of the composite,the growth and phase transition of nanoprecipitates at high temperature will reduce their contribution to strength,while the stable HfB_(2) particles can inhibit the coarsening of matrix grains and maintain the high-density geometrically necessary dislocations(GNDs)in the matrix,which ensures more excellent high-temperature resistance of the hybrid composite.As a result,the hy-brid structure can simultaneously possess the advantages of multiple reinforcements and make up for the shortcomings of each other.Finally,a copper matrix composite with high strength,high conductivity,and excellent high-temperature performance is displayed.展开更多
Copper matrix composites(CMCs)offer promising applications by combining the functional characteristics of copper with composite phases.With the rapid advancement in aerospace,microelectronics,and intelligent terminal ...Copper matrix composites(CMCs)offer promising applications by combining the functional characteristics of copper with composite phases.With the rapid advancement in aerospace,microelectronics,and intelligent terminal engineering,the demand for CMCs with superior mechanical and electrical properties has become increasingly critical.This paper reviews the design principles,preparation methods,microstructures and properties of some typical CMCs.The existing form of composite phases in the Cu matrix and their effects on microstructure evolution and comprehensive properties are summarised.Key underlying mechanisms governing these enhancements are discussed.The results provide a systematic understanding of the relationship between reinforcement phases and properties,offering insights for the future development of CMCs aimed to achieve much better comprehensive properties.The paper concludes by outlining the development trends and future outlook for the application of CMCs.展开更多
Copper/silicon carbide composites (Cu/SiC) and copper/alumina composites (Cu/Al2O3) were fabricated by the powder metallurgy method. The influence of reinforcement particles contents on the relevant properties of ...Copper/silicon carbide composites (Cu/SiC) and copper/alumina composites (Cu/Al2O3) were fabricated by the powder metallurgy method. The influence of reinforcement particles contents on the relevant properties of the composites and the microstructure of Cu/SiC and Cu/Al2O3 composites were studied. The reinforcement effects of nano-SiC and nano-Al2O3 particles were compared. The experimental results show that with the increase of the amount of nano-SiC and nano-Al2O3 particles, the density of the both composites decreases, the resistivity increases, whereas the hardness increases firstly and then drops. The softening temperatures of the composites are above 700℃ which is far higher than that of the pure copper, leading to the improvement of the thermal stability of the composites at high temperatures. Considering all factors, the reinforcement effects of nano-SiC are better than those of nano-Al2O3 when their contents are the same in the copper matrix.展开更多
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE...Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.展开更多
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were...Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.展开更多
There is a critical need to develop advanced high-temperature thermal storage systems to improve efficiencies and reduce the costs of solar thermal storage system.In this work,two typical systems composed with Cu as m...There is a critical need to develop advanced high-temperature thermal storage systems to improve efficiencies and reduce the costs of solar thermal storage system.In this work,two typical systems composed with Cu as matrix and Sn as the phase change material(PCM)are explored,namely,the 3-deimentional(3D)structure system by embedding Sn particles into Cu matrix and the 2-deimentional(2D)structure system by embedding Sn wires into Cu matrix.Given the thermophysical properties of a nanomaterial could be importantly different from that of a bulk one,we thus firstly derive the thermophysical properties of PCM and matrix theoretically,like the thermal conductivity by kinetic method and the specific heat capacity based on Lindemann’s criterion.And then,these properties are utilized to estimate the energy storage ability in both 3D and 2D structure system,and the influence of structure on heat transfer efficiency is theoretically investigated in both 3D and 2D structure system.Results turn out that 3D structure system is a better choice than a 2D structure system,because of larger specific surface area,a larger sensitive heat capacity and a larger thermal conductivity.When the feature size of the PCM decreases to be less than a critical value which is about 500 nm for Sn,the thermal conductivity of the system decreases exponentially while the heat storage capacity increases lineally.Moreover,when the feature size of Sn geometry is less than a critical value,which is 15 nm for 3D structure system and 25 nm for 2D structure,the Cu matrix can’t play a role in improving the effective thermal conductivity of the whole system.展开更多
Copper has good electrical conductivity but poor mechanical and wear-resistant properties.To enhance the mechanical and wear-resistant properties of the copper matrix,a strategy of in-situ generation of graphene was a...Copper has good electrical conductivity but poor mechanical and wear-resistant properties.To enhance the mechanical and wear-resistant properties of the copper matrix,a strategy of in-situ generation of graphene was adopted.Through ball-milling processes,a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper.Then,a uniform and continuous graphene network was generated in-situ in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites.The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface,improving the wear resistance and the electrical conductivity of composites.When the graphene content in the composite material was 0.100 wt.%,the friction coefficient and the wear rate were 0.36 and 6.36×10^(-6)mm^(3)·N^(-1)·m^(-1),diminished by 52%and reduced 5.11 times those of pure copper,respectively,while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%.Therefore,this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials.展开更多
The integration of two-dimensional(2D)materials into metal matrices represents a compelling strategy for creating next-generation structural materials with synergistic mechanical and functional properties.Among these,...The integration of two-dimensional(2D)materials into metal matrices represents a compelling strategy for creating next-generation structural materials with synergistic mechanical and functional properties.Among these,borophene offers exceptional theoretical stiffness(398 N/m),tunable electrical character,and structural polymorphism.However,the scalable synthesis of crystalline borophene and its practical integration into metal matrices remain formidable challenges.Here,we report a breakthrough bottom-up strategy for the controlled chemical vapor deposition(CVD)of large-scale,single-crystallineα'-4H-borophene directly on Cu(111)surface using B2H6 gas.By controlling growth kinetics,a dendritic borophene morphology is obtained to promote mechanical interlocking.This in-situ fabrication creates an integrated borophene/copper composite,exhibiting a remarkable simultaneous enhancement in both strength and stiffness.Compared with pristine copper,the borophene-reinforced composites show significant mechanical enhancements:an increase of 71%in Young’s modulus(113.5 to 194.3 GPa),a higher yield strength of 323%(69 to 292 MPa),and a greater ultimate tensile strength of 43%(228 to 325 MPa).These improvements exceed those of other reported 2D material-reinforced Cu composites,establishing borophene’s potential for structural applications and offering a novel synthesis pathway for advanced metal-matrix composites reinforced with 2D materials.展开更多
A novel approach of decorating graphene surface with graphene quantum dots(abbreviated as GQDs@Gr)was presented to achieve superior tribological properties in Gr/Cu composites.The prepared GQDs@Gr hybrid reinforcement...A novel approach of decorating graphene surface with graphene quantum dots(abbreviated as GQDs@Gr)was presented to achieve superior tribological properties in Gr/Cu composites.The prepared GQDs@Gr hybrid reinforcement possessed superior dispersion and had achieved strong interface bonding with Cu matrix.GQDs@Gr/Cu composite showed a good combination of wear resistance and electrical conductivity due to the synergistic effect of GQDs and Gr.Specifically,the coefficient of friction(COF)was reduced to 0.3,the wear rate(WR)was 2.13×10^(-5) mm^(3)·N^(−1)·m^(−1)(only a quarter of pure copper),and maintained the electrical conductivity of 96.5%IACS(international annealed copper standard).As a result,delamination,fracture,and plow furrows on the wear surface of Gr/Cu composite indicate that fatigue and abrasive adhesive wear are the main wear mechanisms.Wear surface lubrication film and strong interface bonding ensure better comprehensive performance of GQDs@Gr/Cu composite.展开更多
Indium(In)has been used as a thermal interface material(TIM1)in high-performance central processing unit(CPU)for better heat dissipation.However,leakage or pump-out of liquid indium during the multiple reflow cycles l...Indium(In)has been used as a thermal interface material(TIM1)in high-performance central processing unit(CPU)for better heat dissipation.However,leakage or pump-out of liquid indium during the multiple reflow cycles limits its application in advanced flip chip ball gray array(FCBGA)packaging.Former researchers place a seal or dam structure to prevent In leakage,leading to the risk of In explosion,thermal degradation,or require additional keep-out zones.In this work,a copper foam(CF)matrix was embedded in In to absorb the liquid In and eliminate the leakage of In TIM1 during the multiple reflow cycles,as the CF capillary force.Au/Ni/Cu-Au/Ni/Cu joint was fabricated by soldering with the composite solder at 190℃for 2 min.After reflow cycles,good metallurgical bonding was formed at interfaces of joint.Rod-like Cu_(11)In_(9) formed at the CF and In interface,due to the re-dissolved of Cu_(11)In_(9) crystal.Small amount of Cu atoms from CF can reduce the activity of In,which inhibits the growth of Ni_(3)In_(7) intermetallic compound(IMC)at the interface of In and Au/Ni/Cu substrate.The CF matrix also improved the shear strength(22.9%)and thermal conductivity of the solder joints.Besides,the fracture behavior of solder joints without CF matrix was classified to be ductile type while that with CF matrix was changed to be ductile-brittle mixed type.展开更多
Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix m...Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.展开更多
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w...Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.展开更多
Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase trans...Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.展开更多
Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resista...Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resistance.Herein,BNNS/Cu composites were fabricated by the powder metallurgy route,matrix-alloying(adding 1.0 wt%Ti)strategy was adopted to improve the interfacial wettability and strengthen interface adhesion.A typical"sandwich"-like multiply interface structure involving TiN transition layers,BNNS and Cu matrix had been well constructed through the rational heat treatment(900℃ for 120 min).Additionally,nano-sized TiB whisker was in situ formed in the vicinity of the interface,it had linked the BNNS-Cu-TiN multiply interface,which played a role of"threading the needle"and significantly strengthened the multi-interfaces bonding.This specific interface structure was finely characterized,and the formation mechanism of solid-state interfacial reaction feature was proposed.The results demonstrated that the ultimate tensile strength(UTS)of BNNS/Cu-(Ti)-900℃ increased from 248 to 530 MPa(increased by 114%),and the coefficient of friction(COF)decreased from 0.51 to 0.28 than pure Cu.This work highlights the importance of interface configuration design,which contributes to the development of CMCs with prominent comprehensive properties.展开更多
An active protection coating for pH-responsive was prepared.The hollow mesoporous silica microspheres(HMSNs)were loaded with 2-mercaptobenzothiazole(MBT),and then they were coated with chitosan(CS).The composite micro...An active protection coating for pH-responsive was prepared.The hollow mesoporous silica microspheres(HMSNs)were loaded with 2-mercaptobenzothiazole(MBT),and then they were coated with chitosan(CS).The composite microspheres were in the range of 650−750 nm in diameter.CS-HMSN-MBT coating had a faster repair rate under acidic conditions by synergistic effect between CS and MBT.The repair rate under alkaline conditions was slowed down.The active protection performance reached the strongest after 3 d immersion.The corrosion inhibitor release mechanism was optimized to extend the service life of the coating and to achieve long-term service of the copper substrate.展开更多
基金Project(20111080980)supported by the Initiative Scientific Research Program,Tsinghua University,China
文摘A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.
基金financially supported by the Natural Science Foundation of Heilongjiang Province,China(No.LC2015020)Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Personnel of China(No.2015192)+1 种基金the Innovative Talent Fund ofHarbin City(No.2016RAQXJ185)Science Funds for the Young Innovative Talents of HUST(No.201604)
文摘Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composites were characterized by scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction and Raman spectroscopy, respectively. The effects of graphene contents, applied loads and sliding speeds on the tribological behavior of the composites were investigated. The results indicate that the coefficient of friction of the composites decreases first and then increases with increasing the graphene content. The lowest friction coefficient is achieved in 0.3 wt~ Gr/Cu composite, which decreases by 65% compared to that of pure copper. The coefficient of friction of the composite does not have significant change with increasing the applied load, however, it increases with increasing the sliding speed. The tribological mechanisms of the composite under different conditions were also investigated.
文摘Effects of rare earth element La on the microstructure of Cumatrix diamond tools were researched under the conditions of variousmaterials components and the process parameters in order to improvematerials properties. SEM, XPS and X-ray were used to investigate thefracture section, microstructure and the element valence inmaterials. The Results shown that the combination of rare earthelement La and transition element Ti is advantageous to the bondingstate Between diamond particles and matrix, so it can improve thematerials properties. Suitable sintering temperature is 790 deg. C.
基金supported by National Natural Science Foundation of China(No.51971101)Science and Technology Development Program of Jilin Province,China(20230201146G X)Exploration Foundation of State Key Laboratory of Automotive Simulation and Control(asclzytsxm-202015)。
文摘Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.
基金Project(52064032)supported by the National Natural Science Foundation of ChinaProjects(2019ZE001,202002AB080001)supported by the Yunnan Science and Technology Projects,ChinaProject(YNWR-QNBJ-2018-005)supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents,China。
文摘Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.
基金supported by the National Natural Science Foundation of China(Nos.52127802,52271137,and 51834009).
文摘A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature performances was studied from macro and micro perspectives,respectively.The hybrid of dual-scale particles can make the strain distribution of the composite at the early deformation stage more uniform and delay the strain concentration caused by the HfB_(2) particle.The dislocation pinning of HfB_(2) particles and the coherent strengthening of Cu_(5) Hf nanoprecipitates simultaneously play a strengthening role,but the strength of the hybrid composite is not a simple superposition of two strengthening mod-els.In addition,both Cu_(5) Hf nanoprecipitates and HfB_(2) microparticles contribute to the high-temperature performance of the composite,the growth and phase transition of nanoprecipitates at high temperature will reduce their contribution to strength,while the stable HfB_(2) particles can inhibit the coarsening of matrix grains and maintain the high-density geometrically necessary dislocations(GNDs)in the matrix,which ensures more excellent high-temperature resistance of the hybrid composite.As a result,the hy-brid structure can simultaneously possess the advantages of multiple reinforcements and make up for the shortcomings of each other.Finally,a copper matrix composite with high strength,high conductivity,and excellent high-temperature performance is displayed.
基金support by the Key-Area Research and Development Program of Guangdong Province,China(No.2024B0101080003)Hunan Provincial Natural Science Foundation of China(No.2024JJ2076)grants from the State Key Laboratory of Powder Metallurgy,Central South University,China.
文摘Copper matrix composites(CMCs)offer promising applications by combining the functional characteristics of copper with composite phases.With the rapid advancement in aerospace,microelectronics,and intelligent terminal engineering,the demand for CMCs with superior mechanical and electrical properties has become increasingly critical.This paper reviews the design principles,preparation methods,microstructures and properties of some typical CMCs.The existing form of composite phases in the Cu matrix and their effects on microstructure evolution and comprehensive properties are summarised.Key underlying mechanisms governing these enhancements are discussed.The results provide a systematic understanding of the relationship between reinforcement phases and properties,offering insights for the future development of CMCs aimed to achieve much better comprehensive properties.The paper concludes by outlining the development trends and future outlook for the application of CMCs.
文摘Copper/silicon carbide composites (Cu/SiC) and copper/alumina composites (Cu/Al2O3) were fabricated by the powder metallurgy method. The influence of reinforcement particles contents on the relevant properties of the composites and the microstructure of Cu/SiC and Cu/Al2O3 composites were studied. The reinforcement effects of nano-SiC and nano-Al2O3 particles were compared. The experimental results show that with the increase of the amount of nano-SiC and nano-Al2O3 particles, the density of the both composites decreases, the resistivity increases, whereas the hardness increases firstly and then drops. The softening temperatures of the composites are above 700℃ which is far higher than that of the pure copper, leading to the improvement of the thermal stability of the composites at high temperatures. Considering all factors, the reinforcement effects of nano-SiC are better than those of nano-Al2O3 when their contents are the same in the copper matrix.
文摘Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.
基金supported by the Fundamental Research Funds for the Central Universities(2020ZDPY0215)。
文摘There is a critical need to develop advanced high-temperature thermal storage systems to improve efficiencies and reduce the costs of solar thermal storage system.In this work,two typical systems composed with Cu as matrix and Sn as the phase change material(PCM)are explored,namely,the 3-deimentional(3D)structure system by embedding Sn particles into Cu matrix and the 2-deimentional(2D)structure system by embedding Sn wires into Cu matrix.Given the thermophysical properties of a nanomaterial could be importantly different from that of a bulk one,we thus firstly derive the thermophysical properties of PCM and matrix theoretically,like the thermal conductivity by kinetic method and the specific heat capacity based on Lindemann’s criterion.And then,these properties are utilized to estimate the energy storage ability in both 3D and 2D structure system,and the influence of structure on heat transfer efficiency is theoretically investigated in both 3D and 2D structure system.Results turn out that 3D structure system is a better choice than a 2D structure system,because of larger specific surface area,a larger sensitive heat capacity and a larger thermal conductivity.When the feature size of the PCM decreases to be less than a critical value which is about 500 nm for Sn,the thermal conductivity of the system decreases exponentially while the heat storage capacity increases lineally.Moreover,when the feature size of Sn geometry is less than a critical value,which is 15 nm for 3D structure system and 25 nm for 2D structure,the Cu matrix can’t play a role in improving the effective thermal conductivity of the whole system.
基金support from the Central Government Guides Local Science and Technology Development(CN)(Grant No.[2019]4011).
文摘Copper has good electrical conductivity but poor mechanical and wear-resistant properties.To enhance the mechanical and wear-resistant properties of the copper matrix,a strategy of in-situ generation of graphene was adopted.Through ball-milling processes,a carbon source and submicron spherical copper were uniformly dispersed in a dendritic copper.Then,a uniform and continuous graphene network was generated in-situ in the copper matrix during the vacuum hot-pressing sintering process to improve the performance of composites.The graphene product exhibited lubrication effect and provided channels for electrons to move through the interface,improving the wear resistance and the electrical conductivity of composites.When the graphene content in the composite material was 0.100 wt.%,the friction coefficient and the wear rate were 0.36 and 6.36×10^(-6)mm^(3)·N^(-1)·m^(-1),diminished by 52%and reduced 5.11 times those of pure copper,respectively,while the electrical conductivity rose to 94.57% IACS and the hardness was enhanced by 47.8%.Therefore,this method provides a new approach for the preparation of highly conductive and wear-resistant copper matrix composite materials.
基金supported by the National Natural Science Foundation of China(No.61774085)the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Nos.MCAS-I-0425G01 and MCAS-IS-0124K01)+1 种基金the Fundamental Research Funds for the Central Universities(No.YQR23095)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The integration of two-dimensional(2D)materials into metal matrices represents a compelling strategy for creating next-generation structural materials with synergistic mechanical and functional properties.Among these,borophene offers exceptional theoretical stiffness(398 N/m),tunable electrical character,and structural polymorphism.However,the scalable synthesis of crystalline borophene and its practical integration into metal matrices remain formidable challenges.Here,we report a breakthrough bottom-up strategy for the controlled chemical vapor deposition(CVD)of large-scale,single-crystallineα'-4H-borophene directly on Cu(111)surface using B2H6 gas.By controlling growth kinetics,a dendritic borophene morphology is obtained to promote mechanical interlocking.This in-situ fabrication creates an integrated borophene/copper composite,exhibiting a remarkable simultaneous enhancement in both strength and stiffness.Compared with pristine copper,the borophene-reinforced composites show significant mechanical enhancements:an increase of 71%in Young’s modulus(113.5 to 194.3 GPa),a higher yield strength of 323%(69 to 292 MPa),and a greater ultimate tensile strength of 43%(228 to 325 MPa).These improvements exceed those of other reported 2D material-reinforced Cu composites,establishing borophene’s potential for structural applications and offering a novel synthesis pathway for advanced metal-matrix composites reinforced with 2D materials.
基金supported by Yunnan Fundamental Research Projects(No.202401CF070085)Yunnan Engineering Research Projects(No.2023-XMDJ-00617273)+1 种基金Industrial Support Plan Project of Gansu Provincial Education Department(No.2024CYZC-22)the National Natural Science Foundation of China(No.52064032).
文摘A novel approach of decorating graphene surface with graphene quantum dots(abbreviated as GQDs@Gr)was presented to achieve superior tribological properties in Gr/Cu composites.The prepared GQDs@Gr hybrid reinforcement possessed superior dispersion and had achieved strong interface bonding with Cu matrix.GQDs@Gr/Cu composite showed a good combination of wear resistance and electrical conductivity due to the synergistic effect of GQDs and Gr.Specifically,the coefficient of friction(COF)was reduced to 0.3,the wear rate(WR)was 2.13×10^(-5) mm^(3)·N^(−1)·m^(−1)(only a quarter of pure copper),and maintained the electrical conductivity of 96.5%IACS(international annealed copper standard).As a result,delamination,fracture,and plow furrows on the wear surface of Gr/Cu composite indicate that fatigue and abrasive adhesive wear are the main wear mechanisms.Wear surface lubrication film and strong interface bonding ensure better comprehensive performance of GQDs@Gr/Cu composite.
基金Project(2023GK2063)supported by the Key R&D Program of Hunan Province,ChinaProject(2023GXGG006)supported by the Key Products in Manufacturing Industry of Hunan Province,ChinaProject(kq2102005)supported by Key Project of Science and Technology of Changsha,China。
文摘Indium(In)has been used as a thermal interface material(TIM1)in high-performance central processing unit(CPU)for better heat dissipation.However,leakage or pump-out of liquid indium during the multiple reflow cycles limits its application in advanced flip chip ball gray array(FCBGA)packaging.Former researchers place a seal or dam structure to prevent In leakage,leading to the risk of In explosion,thermal degradation,or require additional keep-out zones.In this work,a copper foam(CF)matrix was embedded in In to absorb the liquid In and eliminate the leakage of In TIM1 during the multiple reflow cycles,as the CF capillary force.Au/Ni/Cu-Au/Ni/Cu joint was fabricated by soldering with the composite solder at 190℃for 2 min.After reflow cycles,good metallurgical bonding was formed at interfaces of joint.Rod-like Cu_(11)In_(9) formed at the CF and In interface,due to the re-dissolved of Cu_(11)In_(9) crystal.Small amount of Cu atoms from CF can reduce the activity of In,which inhibits the growth of Ni_(3)In_(7) intermetallic compound(IMC)at the interface of In and Au/Ni/Cu substrate.The CF matrix also improved the shear strength(22.9%)and thermal conductivity of the solder joints.Besides,the fracture behavior of solder joints without CF matrix was classified to be ductile type while that with CF matrix was changed to be ductile-brittle mixed type.
文摘Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.
基金financially supported by the National Natural Science Foundation of China (No.52171144)。
文摘Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)Fundamental Research Funds for the Central Universities (FRF-GF-17-B37)
文摘Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.
基金financially supported by Yunnan Fundamental Research Projects(No.202301BE070001-007)。
文摘Strengthening interface bonding between boron nitride nanosheets(BNNS)and copper matrix is an essential prerequisite for exploiting a new generation of copper matrix composites(CMCs)with high strength and wear resistance.Herein,BNNS/Cu composites were fabricated by the powder metallurgy route,matrix-alloying(adding 1.0 wt%Ti)strategy was adopted to improve the interfacial wettability and strengthen interface adhesion.A typical"sandwich"-like multiply interface structure involving TiN transition layers,BNNS and Cu matrix had been well constructed through the rational heat treatment(900℃ for 120 min).Additionally,nano-sized TiB whisker was in situ formed in the vicinity of the interface,it had linked the BNNS-Cu-TiN multiply interface,which played a role of"threading the needle"and significantly strengthened the multi-interfaces bonding.This specific interface structure was finely characterized,and the formation mechanism of solid-state interfacial reaction feature was proposed.The results demonstrated that the ultimate tensile strength(UTS)of BNNS/Cu-(Ti)-900℃ increased from 248 to 530 MPa(increased by 114%),and the coefficient of friction(COF)decreased from 0.51 to 0.28 than pure Cu.This work highlights the importance of interface configuration design,which contributes to the development of CMCs with prominent comprehensive properties.
基金Project(2023YFC2907304)supported by the National Key R&D Program Projects,ChinaProject(ZR2021ME087)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(2022KLMM305)supported by the Shandong Provincial Key Laboratory of Mining Machinery Engineering School Enterprise Joint Fund,ChinaProject(2023CXPT062)supported by the Shandong Key Research and Development Program(Competitive Innovation Platform),China。
文摘An active protection coating for pH-responsive was prepared.The hollow mesoporous silica microspheres(HMSNs)were loaded with 2-mercaptobenzothiazole(MBT),and then they were coated with chitosan(CS).The composite microspheres were in the range of 650−750 nm in diameter.CS-HMSN-MBT coating had a faster repair rate under acidic conditions by synergistic effect between CS and MBT.The repair rate under alkaline conditions was slowed down.The active protection performance reached the strongest after 3 d immersion.The corrosion inhibitor release mechanism was optimized to extend the service life of the coating and to achieve long-term service of the copper substrate.