期刊文献+
共找到1,273篇文章
< 1 2 64 >
每页显示 20 50 100
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:2
1
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) Path planning
在线阅读 下载PDF
Cooperative Game Theory-Based Optimal Scheduling Strategy for Microgrid Alliances
2
作者 Zhiyuan Zhang Meng Shuai +5 位作者 Bin Wang Ying He Fan Yang Liyan Ren Yuyuan Zhang Ziren Wang 《Energy Engineering》 2025年第10期4169-4194,共26页
With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization p... With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%. 展开更多
关键词 Microgrid coalition cooperative game Nash bargaining ADMM algorithm
在线阅读 下载PDF
Co-DeepNet:A Cooperative Convolutional Neural Network for DNA Methylation-Based Age Prediction
3
作者 Najmeh Sadat Jaddi Mohammad Saniee Abadeh +4 位作者 Niousha Bagheri Khoulenjani Salwani Abdullah MohammadMahdi Ariannejad Mohd Zakree Ahmad Nazri Fatemeh Alvankarian 《CAAI Transactions on Intelligence Technology》 2025年第4期1118-1134,共17页
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d... Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis. 展开更多
关键词 age prediction convolutional neural network cooperative genetic algorithm knowledge transmission
在线阅读 下载PDF
Adaptive Multi-Learning Cooperation Search Algorithm for Photovoltaic Model Parameter Identification
4
作者 Xu Chen Shuai Wang Kaixun He 《Computers, Materials & Continua》 2025年第10期1779-1806,共28页
Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in... Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms. 展开更多
关键词 Photovoltaic model parameter identification cooperation search algorithm adaptive multiple learning chaotic grouping reflection
在线阅读 下载PDF
Predictive Ecological Cooperative Control of Electric Vehicles Platoon on Hilly Roads
5
作者 Bingbing Li Weichao Zhuang +4 位作者 Boli Chen Hao Zhang Sheng Yu Jianrun Zhang Guodong Yin 《Chinese Journal of Mechanical Engineering》 2025年第2期360-373,共14页
The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailin... The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated. 展开更多
关键词 Electric vehicles platoon Model predictive control Energy efficiency cooperative adaptive cruise control Genetic algorithm
在线阅读 下载PDF
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
6
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 Wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
Cooperative co-evolution based distributed path planning of multiple mobile robots 被引量:3
7
作者 王梅 吴铁军 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期697-706,共10页
This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is d... This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems. 展开更多
关键词 cooperative co-evolution Multiple mobile robot cooperative collision avoidance Path planning
在线阅读 下载PDF
Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modifed genetic algorithm with multi-type genes 被引量:39
8
作者 Deng Qibo Yu Jianqiao Wang Ningfei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1238-1250,共13页
The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different oper... The task assignment problem of multiple heterogeneous unmanned aerial vehicles (UAVs), concerned with cooperative decision making and control, is studied in this paper. The heterogeneous vehicles have different operational capabilities and kinematic constraints, and carry limited resources (e.g., weapons) onboard. They are designated to perform multiple consecutive tasks cooperatively on multiple ground targets. The problem becomes much more complicated because of these terms of heterogeneity. In order to tackle the challenge, we modify the former genetic algorithm with multi-type genes to stochastically search a best solution. Genes of chromo- somes are different, and they are assorted into several types according to the tasks that must be performed on targets. Different types of genes are processed specifically in the improved genetic operators including initialization, crossover, and mutation. We also present a mirror representation of vehicles to deal with the limited resource constraint. Feasible chromosomes that vehicles could perform tasks using their limited resources under the assignment are created and evolved by genetic operators. The effect of the proposed algorithm is demonstrated in numerical simulations. The results show that it effectively provides good feasible solutions and finds an optimal one. 展开更多
关键词 cooperative control Genetic algorithm Heterogeneous unmanned aerial vehicles Multi-type genes Task assignment
原文传递
Target distribution in cooperative combat based on Bayesian optimization algorithm 被引量:6
9
作者 Shi Zhi fu Zhang An Wang Anli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期339-342,共4页
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ... Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best. 展开更多
关键词 target distribution Bayesian network Bayesian optimization algorithm cooperative air combat.
在线阅读 下载PDF
Distributed Cooperative Control Algorithm for Multi-UAV Mission Rendezvous 被引量:6
10
作者 Liu Guoliang Xing Dongjing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第6期617-626,共10页
Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propo... Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy. 展开更多
关键词 unmanned aerial vehicles loose formation rendezvous close formation rendezvous consensus algorithm cooperative control
在线阅读 下载PDF
An improving energy efficiency cooperation algorithm based on Nash bargaining solution in selfish user cooperative networks
11
作者 张闯 赵洪林 贾敏 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期181-187,共7页
A bandwidth-exchange cooperation algorithm based on the Nash bargaining solution (NBS) is proposed to encourage the selfish users to participate with more cooperation so as to improve the users' energy efficiency. ... A bandwidth-exchange cooperation algorithm based on the Nash bargaining solution (NBS) is proposed to encourage the selfish users to participate with more cooperation so as to improve the users' energy efficiency. As a result, two key problems, i.e. , when to cooperate and how to cooperate, are solved. For the first problem, a proposed cooperation condition that can decide when to cooperate and guarantee users' energy efficiency achieved through cooperation is not lower than that achieved without cooperation. For the second problem, the cooperation bandwidth allocations (CBAs) based on the NBS solve the problem how to cooperate when cooperation takes place. Simulation results show that, as the modulation order of quadrature amplitude modulation (QAM) increases, the cooperation between both users only occurs with a large signal-to-noise ratio (SNR). Meanwhile, the energy efficiency decreases as the modulation order increases. Despite all this, the proposed algorithm can obviously improve the energy efficiency measured in bits-per-Joule compared with non-cooperation. 展开更多
关键词 cooperation algorithm Nash bargaining solution(NBS) resource-exchange quadrature amplitude modulation(QAM)
在线阅读 下载PDF
Convex Optimization Algorithms for Cooperative Localization in Autonomous Underwater Vehicles 被引量:9
12
作者 LIU Ming-Yong LI Wen-Bai PEI Xuan 《自动化学报》 EI CSCD 北大核心 2010年第5期704-710,共7页
关键词 最优化 自动化系统 自适应系统 AUV
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
13
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
PSO Clustering Algorithm Based on Cooperative Evolution
14
作者 曲建华 邵增珍 刘希玉 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期285-288,共4页
Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with mu... Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with multi-populations was presented. It adopts cooperative evolutionary strategy with multi-populations to change the mode of traditional searching optimum solutions. It searches the local optimum and updates the whole best position (gBest) and local best position (pBest) ceaselessly. The gBest will be passed in all sub-populations. When the gBest meets the precision,the evolution will terminate. The whole clustering process is divided into two stages. The first stage uses the cooperative evolutionary PSO algorithm to search the initial clustering centers. The second stage uses the K-means algorithm. The experiment results demonstrate that this method can extract the correct number of clusters with good clustering quality compared with the results obtained from other clustering algorithms. 展开更多
关键词 PARTICLE SWARM Optimization (PSO) clustering algorithm cooperative evolution muiti-populations
在线阅读 下载PDF
Secure Localization Algorithm Based on Node Cooperative for Sensor Networks
15
作者 MA Jianguo PENG Bao 《Wuhan University Journal of Natural Sciences》 CAS 2008年第5期636-640,共5页
As to the safety threats faced by sensor networks (SN), nodes limitations of computation, memory and communication, a secure location algorithm (node cooperative secure localization, NCSL) is presented in this pap... As to the safety threats faced by sensor networks (SN), nodes limitations of computation, memory and communication, a secure location algorithm (node cooperative secure localization, NCSL) is presented in this paper. The algorithm takes the improvements of SN location information security as its design targets, utilizing nodes' cooperation to build virtual antennae array to communicate and localize, and gains arraying antenna advantage for SN without extra hardware cost, such as reducing multi-path effects, increasing receivers' signal to noise ratio and system capa- bility, reducing transmitting power, and so on. Simulations show that the algorithm based on virtual antennae array has good localization ability with a at high accuracy in direction-of-arrival (DOA) estimation, and makes SN capable to resist common malicious attacks, especially wormhole attack, by using the judgment rules for malicious attacks. 展开更多
关键词 sensor network secure algorithm cooperative antenna array
在线阅读 下载PDF
Adaptive co-evolution of strategies and network leading to optimal cooperation level in spatial prisoner's dilemma game
16
作者 陈含爽 侯中怀 +1 位作者 张季谦 辛厚文 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期25-30,共6页
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategie... We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve. 展开更多
关键词 prisoner's dilemma game adaptive network co-evolution cooperATION
原文传递
Cooperative detection algorithm of spectrum holes in cognitive radio
17
作者 石磊 叶准 张中兆 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第1期27-30,共4页
To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds... To improve the detection performance of sensing users for primary users in the cognitive radio, an optimal cooperative detection algorithm for many sensing users is proposed. In this paper, optimal decision thresholds of each sensing user are discussed. Theoretical analysis and simulation results indicate that the detection probability of optimal decision threshold rules is better than that of determined threshold rules when the false alarm of the fusion center is constant. The proposed optimal cooperative detection algorithm improves the detection performance of primary users as the attendees grow. The 2 dB gain of detection probability can be obtained when a new sensing user joins in, and there is a 17 dB improvement when the accumulation number increases from 1 to 50. 展开更多
关键词 cognitive radio spectrum detection optimal cooperative algorithm
在线阅读 下载PDF
Hybrid Support Vector Regression with Parallel Co-Evolution Algorithm Based on GA and PSO for Forecasting Monthly Rainfall
18
作者 Jiansheng Wu Yongsheng Xie 《Journal of Software Engineering and Applications》 2019年第12期524-539,共16页
Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regressi... Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting. 展开更多
关键词 Genetic algorithm Particle Swarm Optimization RAINFALL Forecasting PARALLEL co-evolution
在线阅读 下载PDF
Dynamic and Heterogeneous Identity-Based Cooperative Co-Evolution for Distributed Lot-Streaming Flowshop Scheduling Problem
19
作者 Juan Wang Guanghui Zhang +1 位作者 Xiaoling Li Yanxiang Feng 《Complex System Modeling and Simulation》 2025年第1期86-106,共21页
In this research,a novel dynamic and heterogeneous identity based cooperative co-evolutionary algorithm(DHICCA)is proposed for addressing the distributed lot-streaming flowshop scheduling problem(DLSFSP)with the objec... In this research,a novel dynamic and heterogeneous identity based cooperative co-evolutionary algorithm(DHICCA)is proposed for addressing the distributed lot-streaming flowshop scheduling problem(DLSFSP)with the objective to minimize the makespan.A two-layer-vector representation is devised to bridge the solution space of DLSFSP and the search space of DHICCA.In the evolution of DHICCA,population individuals are endowed with heterogeneous identities according to their quality,including superior individuals,ordinary individuals,and inferior individuals,which serve local exploitation,global exploration,and diversified restart,respectively.Because individuals with different identities require different evolutionary mechanisms to fully unleash their respective potentials,identity-specific evolutionary operators are devised to evolve them in a cooperative co-evolutionary way.This is important to use limited population resources to solve complex optimization problems.Specifically,exploitation is carried out on superior individuals by devising three exploitative operators with different intensities based on techniques of variable neighborhood,destruction-construction,and gene targeting.Exploration is executed on ordinary individuals by a newly constructed discrete Jaya algorithm and a probability crossover strategy.In addition,restart is performed on inferior individuals to introduce new evolutionary individuals to the population.After the cooperative co-evolution,all individuals with different identities are merged as a population again,and their identities are dynamically adjusted by new evaluation.The influence of parameters on the algorithm is investigated based on design-of-experiment and comprehensive computational experiments are used to evaluate the performance of all algorithms.The results validate the effectiveness of special designs and show that DHICCA performs more efficient than the existing state-of-the-art algorithms in solving the DLSFSP. 展开更多
关键词 distributed flowshop scheduling lot-streaming scheduling identity division and merge heterogeneous evolution cooperative co-evolution
原文传递
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
20
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
上一页 1 2 64 下一页 到第
使用帮助 返回顶部