期刊文献+
共找到1,575篇文章
< 1 2 79 >
每页显示 20 50 100
Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network 被引量:1
1
作者 Qiaoli Wang Dongping Sheng +7 位作者 Chengzhi Wu Xiaojie Ou Shengdong Yao Jingkai Zhao Feili Li Wei Li Jianmeng Chen 《Journal of Environmental Sciences》 2025年第2期126-138,共13页
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ... Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution. 展开更多
关键词 OZONE Spatiotemporal distribution convolutional neural network Ozone formation rules Incremental reactivity
原文传递
Identification and distribution patterns of the ultra-deep small-scale strike-slip faults based on convolutional neural network in Tarim Basin,NW China 被引量:1
2
作者 Hao Li Jun Han +4 位作者 Cheng Huang Lian-Bo Zeng Bo Lin Ying-Tao Yao Yi-Chen Song 《Petroleum Science》 2025年第8期3152-3167,共16页
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco... The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents. 展开更多
关键词 Small-scale strike-slip faults convolutional neural network Fault label Isolated fracture-vug system Distribution patterns
原文传递
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:1
3
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
4
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
5
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
6
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology
7
作者 Han Yuan 《iRADIOLOGY》 2025年第1期47-60,共14页
Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accur... Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis. 展开更多
关键词 ATELECTASIS convolutional neural networks diagnostic radiology explainable artificial intelligence FRACTURE grad-cam integrated gradients mass PNEUMOTHORAX saliency map
在线阅读 下载PDF
An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks
8
作者 Ahmed Ben Atitallah Jannet Kamoun +3 位作者 Meshari D.Alanazi Turki M.Alanazi Mohammed Albekairi Khaled Kaaniche 《Computers, Materials & Continua》 2025年第6期5761-5779,共19页
Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limita... Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care. 展开更多
关键词 HISTOPATHOLOGY breast cancer convolutional neural networks BreakHis dataset medical imaging healthcare technology
暂未订购
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
9
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants convolutional neural networks Data augmentation Optimization algorithms Model evaluation methods Deep Learning
原文传递
Co-DeepNet:A Cooperative Convolutional Neural Network for DNA Methylation-Based Age Prediction
10
作者 Najmeh Sadat Jaddi Mohammad Saniee Abadeh +4 位作者 Niousha Bagheri Khoulenjani Salwani Abdullah MohammadMahdi Ariannejad Mohd Zakree Ahmad Nazri Fatemeh Alvankarian 《CAAI Transactions on Intelligence Technology》 2025年第4期1118-1134,共17页
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d... Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis. 展开更多
关键词 age prediction convolutional neural network COOPERATIVE genetic algorithm knowledge transmission
在线阅读 下载PDF
Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network
11
作者 Tajinder Kumar Sarbjit Kaur +4 位作者 Purushottam Sharma Ankita Chhikara Xiaochun Cheng Sachin Lalar Vikram Verma 《Computers, Materials & Continua》 2025年第6期5219-5234,共16页
During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farm... During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced. 展开更多
关键词 Tomato leaf disease deep learning DenseNet-121 convolutional autoencoder convolutional neural network
在线阅读 下载PDF
Stochastic state of health estimation for lithium-ion batteries with automated feature fusion using quantum convolutional neural network
12
作者 Chen Liang Shengyu Tao +3 位作者 Xinghao Huang Yezhen Wang Bizhong Xia Xuan Zhang 《Journal of Energy Chemistry》 2025年第7期205-219,共15页
The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data... The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data segments while designing SOH estimation algorithms that efficiently handle the large-scale computational demands of cloud-based battery management systems presents a substantial challenge.In this work,we propose a quantum convolutional neural network(QCNN)model designed for accurate,robust,and generalizable SOH estimation with minimal data and parameter requirements and is compatible with quantum computing cloud platforms in the Noisy Intermediate-Scale Quantum.First,we utilize data from 4 datasets comprising 272 cells,covering 5 chemical compositions,4 rated parameters,and 73operating conditions.We design 5 voltage windows as small as 0.3 V for each cell from incremental capacity peaks for stochastic SOH estimation scenarios generation.We extract 3 effective health indicators(HIs)sequences and develop an automated feature fusion method using quantum rotation gate encoding,achieving an R2of 96%.Subsequently,we design a QCNN whose convolutional layer,constructed with variational quantum circuits,comprises merely 39 parameters.Additionally,we explore the impact of training set size,using strategies,and battery materials on the model’s accuracy.Finally,the QCNN with quantum convolutional layers reduces root mean squared error by 28% and achieves an R^(2)exceeding 96% compared to other three commonly used algorithms.This work demonstrates the effectiveness of quantum encoding for automated feature fusion of HIs extracted from limited discharge data.It highlights the potential of QCNN in improving the accuracy,robustness,and generalization of SOH estimation while dealing with stochastic and noisy data with few parameters and simple structure.It also suggests a new paradigm for leveraging quantum computational power in SOH estimation. 展开更多
关键词 Lithium-ion battery State of health Feature fusion Quantum convolutional neural network Quantum machine learning
在线阅读 下载PDF
Noninvasive Hemoglobin Estimation with Adaptive Lightweight Convolutional Neural Network Using Wearable PPG
13
作者 Florentin Smarandache Saleh I.Alzahrani +2 位作者 Sulaiman Al Amro Ijaz Ahmad Mubashir Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3715-3735,共21页
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn... Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques. 展开更多
关键词 Hemoglobin estimation photoplethysmography(PPG) convolutional neural network(CNN) noninvasive method wearable healthcare
在线阅读 下载PDF
SGP-GCN:A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting
14
作者 Xin Liu Meng Sun +1 位作者 Bo Lin Shibo Gu 《Energy Engineering》 2025年第3期1053-1072,共20页
Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecas... Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells. 展开更多
关键词 Petroleum production forecast graph convolutional neural networks(GCNs) spatial-geological rela-tionships production clustering attention mechanism
在线阅读 下载PDF
Study on separation identification of cement stabilized crushed stone mixture based on convolutional neural network
15
作者 Qingyi Xiao Miaomiao Zhu +2 位作者 Zhenchao Zhao Xinyu Zhao Fangyuan Gong 《Journal of Road Engineering》 2025年第3期353-377,共25页
With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigi... With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigid base layers,cement stabilized crushed stone mixture(hereinafter referred to as water stabilized mixture),often experiences segregation during mixing,transportation,and paving.Separation of water stabilized mixture can greatly reduce the service life of roads and cause damage to people's property,the traditional separation detection method that relies on manual experience has problems of low detection efficiency and low recognition accuracy.In order to solve these problems and assist in the modernization of road construction,this article proposes a separation recognition method for water stabilized mixtures based on deep learning.Firstly,a database of segregation diseases of water stabilized mixture was built.Secondly,the control tests were set up by standard fine-tuning and feature extraction,and four different optimizers were set up respectively.By comparing accuracy,loss,precision,recall and F1-score at the end of the pre-trained network,the overall recognition effect of ResNet-101 as the network model was better.Thirdly,the ResNet-101 model was optimized by SpotTune,replacing cross entropy loss with focus loss,adding PReLU to the pre-trained network and a BN layer to the top layer of the pre-trained network,and using 1×1.Convolutional replacement of the fully connected layer.Finally,build a web side water stabilized mixture segregation recognition platform,and its stability was verified in practical engineering. 展开更多
关键词 Cement-stabilized macadam SEGREGATION convolutional neural network Image recognition
在线阅读 下载PDF
Photonic Chip Based on Ultrafast Laser-Induced Reversible Phase Change for Convolutional Neural Network
16
作者 Jiawang Xie Jianfeng Yan +5 位作者 Haoze Han Yuzhi Zhao Ma Luo Jiaqun Li Heng Guo Ming Qiao 《Nano-Micro Letters》 2025年第8期53-66,共14页
Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips... Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm.Programmable photonic chips are vital for achieving practical applications of photonic computing.Herein,a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing.Through designing the ultrafast laser pulses,the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase,resulting in a large contrast in refractive index and extinction coefficient.As a consequence,the light transmission of waveguides can be switched between write and erase states.To determine the phase change time,the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale,and the time-resolved transient reflectivity is measured.Based on the integrated photonic chip,photonic convolutional neural networks are built to implement machine learning algorithm,and images recognition task is achieved.This work paves a route for fabricating programmable photonic chips by designed ultrafast laser,which will facilitate the application of photonic computing in artificial intelligence. 展开更多
关键词 Photonic chip Ultrafast laser Phase change convolutional neural network
在线阅读 下载PDF
A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data
17
作者 Firdaus Firdaus Siti Nurmaini +8 位作者 Anggun Islami Annisa Darmawahyuni Ade Iriani Sapitri Muhammad Naufal Rachmatullah Bambang Tutuko Akhiar Wista Arum Muhammad Irfan Karim Yultrien Yultrien Ramadhana Noor Salassa Wandya 《Computers, Materials & Continua》 2025年第2期3419-3441,共23页
Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attentio... Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated the model on publicly available datasets, including Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV), which contain critical care patient data, and the Beijing Multi-Site Air Quality dataset, which measures environmental air quality. The proposed DRes-CNN method achieved a root mean square error (RMSE) of 0.00006, highlighting its high accuracy and robustness. We also compared with Low Light-Convolutional Neural Network (LL-CNN) and U-Net methods, which had RMSE values of 0.00075 and 0.00073, respectively. This represented an improvement of approximately 92% over LL-CNN and 91% over U-Net. The results showed that this DRes-CNN-based imputation method outperforms current state-of-the-art models. These results established DRes-CNN as a reliable solution for addressing missing data. 展开更多
关键词 Data imputation missing data deep learning deep residual convolutional neural network
在线阅读 下载PDF
Steel Ball Defect Detection System Using Automatic Vertical Rotating Mechanism and Convolutional Neural Network
18
作者 Yi-Ze Wu Yi-Cheng Huang 《Computers, Materials & Continua》 2025年第4期97-114,共18页
Precision steel balls are critical components in precision bearings.Surface defects on the steel balls will significantly reduce their useful life and cause linear or rotational transmission errors.Human visual inspec... Precision steel balls are critical components in precision bearings.Surface defects on the steel balls will significantly reduce their useful life and cause linear or rotational transmission errors.Human visual inspection of precision steel balls demands significant labor work.Besides,human inspection cannot maintain consistent quality assurance.To address these limitations and reduce inspection time,a convolutional neural network(CNN)based optical inspection system has been developed that automatically detects steel ball defects using a novel designated vertical mechanism.During image detection processing,two key challenges were addressed and resolved.They are the reflection caused by the coaxial light onto the ball center and the image deformation appearing at the edge of the steel balls.The special vertical rotating mechanism utilizing a spinning rod along with a spiral track was developed to enable successful and reliable full steel ball surface inspection during the rod rotation.The combination of the spinning rod and the spiral rotating component effectively rotates the steel ball to facilitate capturing complete surface images.Geometric calculations demonstrate that the steel balls can be completely inspected through specific rotation degrees,with the surface fully captured in 12 photo shots.These images are then analyzed by a CNN to determine surface quality defects.This study presents a new inspection method that enables the entire examination of steel ball surfaces.The successful development of this innovative automated optical inspection system with CNN represents a significant advancement in inspection quality control for precision steel balls. 展开更多
关键词 Steel ball surface defect inspection automated optical inspection convolutional neural network
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
19
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
原文传递
Domain adaptation method inspired by quantum convolutional neural network
20
作者 Chunhui Wu Junhao Pei +2 位作者 Yihua Wu Anqi Zhang Shengmei Zhao 《Chinese Physics B》 2025年第7期185-195,共11页
Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices.Domain adaptation(DA)is an effective method for addressing the distribution discrepancy ... Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices.Domain adaptation(DA)is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed.In this paper,we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network,named variational quantum domain adaptation(VQDA).The data are first uploaded by a‘quantum coding module',then the feature information is extracted by several‘quantum convolution layers'and‘quantum pooling layers',which is named‘Feature Extractor'.Subsequently,the labels and the domains of the samples are obtained by the‘quantum fully connected layer'.With a gradient reversal module,the trained‘Feature Extractor'can extract the features that cannot be distinguished from the source and target domains.The simulations on the local computer and IBM Quantum Experience(IBM Q)platform by Qiskit show the effectiveness of the proposed method.The results show that VQDA(with 8 quantum bits)has 91.46%average classification accuracy for DA task between MNIST→USPS(USPS→MNIST),achieves 91.16%average classification accuracy for gray-scale and color images(with 10 quantum bits),and has 69.25%average classification accuracy on the DA task for color images(also with 10 quantum bits).VQDA achieves a 9.14%improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks.Simultaneously,the parameters scale is reduced to 43%by using VQDA when both quantum and classical DA methods have similar classification accuracies. 展开更多
关键词 quantum image processing domain adaptation quantum convolutional neural network IBM quantum experience
原文传递
上一页 1 2 79 下一页 到第
使用帮助 返回顶部