A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gr...A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.展开更多
In this paper,we study the convergence of a second-order finite volume approximation of the scalar conservation law.This scheme is based on the generalized Riemann problem(GRP)solver.We first investigate the stability...In this paper,we study the convergence of a second-order finite volume approximation of the scalar conservation law.This scheme is based on the generalized Riemann problem(GRP)solver.We first investigate the stability of the GRP scheme and find that it might be entropy-unstable when the shock wave is generated.By adding an artificial viscosity,we propose a new stabilized GRP scheme.Under the assumption that numerical solutions are uniformly bounded,we prove the consistency and convergence of this new GRP method.展开更多
Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpai...Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpair of a Hermitian matrix.The convergence theorems of these methods were established under two conditions imposed on the initial guesses for the target eigenvalue and eigenvector.In this paper,we show that these two conditions can be merged into a relaxed one,so the convergence conditions in these theorems can be weakened,and the resulting convergence theorems are applicable to a broad class of matrices.In addition,we give detailed discussions about the new convergence condition and the corresponding estimates of the convergence errors,leading to rigorous convergence theories for both the MRQI and the IMRQI.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-stro...In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-strongly monotone operator and the set of common fixed points of two infinite families of relatively nonexpansive mappings or the set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings in Banach spaces. Then we study the weak convergence of the two iterative sequences. Our results improve and extend the results announced by many others.展开更多
For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two no...For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.展开更多
In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of non...In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.展开更多
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l...In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.展开更多
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro...This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.展开更多
At recent, Hourgat et gave a domain decomposition algorithm for elliptic problems which can be implemented in parallel. Many numerical experiments have illustrated its efficiency. In the present paper, we apply this a...At recent, Hourgat et gave a domain decomposition algorithm for elliptic problems which can be implemented in parallel. Many numerical experiments have illustrated its efficiency. In the present paper, we apply this algorithm to solve the discrete parabolic problems, analyse its convergence and show that its convergence rale is about (1 - 2p + σp2 ) which is nearly optimal and independent of the parameter τ, where σ τ O((1 +H )(1 + ln(H / h))2 ). 0 【 p 【 1 / σ,τ,h,H are the time step size, finite element parameter and subdomain diameter, respectively.展开更多
A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of...A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of X-row sufficiency or X-colunm monotonicity is proved. As a result, a sufficient condition for existence and boundedness of solution to the XLCP are obtained.展开更多
In this paper, we demonstrate that the finite-dimensional approximations to the solutions of a linear bond-based peridynamic boundary value problem converge to the exact solution exponentially with the analyticity ass...In this paper, we demonstrate that the finite-dimensional approximations to the solutions of a linear bond-based peridynamic boundary value problem converge to the exact solution exponentially with the analyticity assumption of the forcing term, therefore greatly improve the convergence rate derived in literature.展开更多
The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solut...The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.展开更多
This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transfo...This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations.We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework.The convergence rate is valid independent of the small parameter.Furthermore,we establish a sharper L^(2)-error estimate if the true solution has a special regular component.Numerical experiments are also given.展开更多
In this paper,we study an extragradient algorithm for approximating solutions of quasi-equilibrium problems in Banach spaces.We prove strong convergence of the sequence generated by the extragradient method to a solut...In this paper,we study an extragradient algorithm for approximating solutions of quasi-equilibrium problems in Banach spaces.We prove strong convergence of the sequence generated by the extragradient method to a solution of the quasi-equilibrium problem.展开更多
We propose and analyze an hp-adaptive DG-FEM algorithm, termed hp-ADFEM, and its one-dimensional realization, which is convergent, instance optimal, and h- and p-robust. The procedure consists of iterating two routine...We propose and analyze an hp-adaptive DG-FEM algorithm, termed hp-ADFEM, and its one-dimensional realization, which is convergent, instance optimal, and h- and p-robust. The procedure consists of iterating two routines:one hinges on Binev's algorithm for the adaptive hp-approximation of a given function, and finds a near-best hp-approximation of the current discrete solution and data to a desired accuracy;the other one improves the discrete solution to a finer but comparable accuracy, by iteratively applying D?rfler marking and h refinement.展开更多
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under m...In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale...In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale under certain conditions. Zhang’s algorithm hasn’t these properties.展开更多
Our goal is to improve the convergence theory of the one-step modulus-based synchronous multisplitting(MSM)and the two-step modulus-based synchronous multisplitting(TMSM)iteration methods for a class of nondifferentia...Our goal is to improve the convergence theory of the one-step modulus-based synchronous multisplitting(MSM)and the two-step modulus-based synchronous multisplitting(TMSM)iteration methods for a class of nondifferentiable nonlinear complementarity problems(NCPs)with H_(+)-matrices.The analysis is developed and the results are renewed under some conditions weakened than before.展开更多
基金supported by the Guangxi Science and Technology base and Talent Project(AD22080047)the National Natural Science Foundation of Guangxi Province(2023GXNFSBA 026063)+1 种基金the Innovation Funds of Chinese University(2021BCF03001)the special foundation for Guangxi Ba Gui Scholars.
文摘A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.
基金funded by the Gutenberg Research College and by Chinesisch-Deutschen Zentrum fiur Wissenschaftsforderung(中德科学中心)Sino-German Project No.GZ1465M.L.is grateful to the Mainz Institute of Multiscale Modelling and SPP 2410 Hyperbolic Balance Laws in Fluid Mechanics:Complexity,Scales,Randomness(CoScaRa)for supporting her research.
文摘In this paper,we study the convergence of a second-order finite volume approximation of the scalar conservation law.This scheme is based on the generalized Riemann problem(GRP)solver.We first investigate the stability of the GRP scheme and find that it might be entropy-unstable when the shock wave is generated.By adding an artificial viscosity,we propose a new stabilized GRP scheme.Under the assumption that numerical solutions are uniformly bounded,we prove the consistency and convergence of this new GRP method.
基金F.Chen:Supported by the National Natural Science Foundation of China(No.11501038)the Science and Technology Planning Projects of Beijing Municipal Education Commission(No.KM201911232010 and No.KM201811232020),China+2 种基金C.-Q.Miao:Supported by the National Natural Science Foundation of China(No.11901361)G.V.Muratova:Supported by the Grant of the Government of the Russian Federation(No.075-15-2019-1928)the China-Russia(NSFC-RFBR)International Cooperative Research Project(No.11911530082 and No.19-51-53013).
文摘Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpair of a Hermitian matrix.The convergence theorems of these methods were established under two conditions imposed on the initial guesses for the target eigenvalue and eigenvector.In this paper,we show that these two conditions can be merged into a relaxed one,so the convergence conditions in these theorems can be weakened,and the resulting convergence theorems are applicable to a broad class of matrices.In addition,we give detailed discussions about the new convergence condition and the corresponding estimates of the convergence errors,leading to rigorous convergence theories for both the MRQI and the IMRQI.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
文摘In this paper, we introduce two new iterative algorithms for finding a common element of the set of solutions of a general equilibrium problem and the set of solutions of the variational inequality for an inverse-strongly monotone operator and the set of common fixed points of two infinite families of relatively nonexpansive mappings or the set of common fixed points of an infinite family of relatively quasi-nonexpansive mappings in Banach spaces. Then we study the weak convergence of the two iterative sequences. Our results improve and extend the results announced by many others.
基金Supported by the National Natural Science Foundation of China(11201422)the Natural Science Foundation of Zhejiang Province(Y6110639,LQ12A01017)
文摘For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.
文摘In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.
文摘In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.
基金supported by the National Natural Science Foundation of China(Nos.51378293 and 51078199)
文摘This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.
基金The work of the first author is supported by the National Natural Science Foundation of ChinaThe work of the second author is supported by the Natural Science Foundation of Tsinghua University.
文摘At recent, Hourgat et gave a domain decomposition algorithm for elliptic problems which can be implemented in parallel. Many numerical experiments have illustrated its efficiency. In the present paper, we apply this algorithm to solve the discrete parabolic problems, analyse its convergence and show that its convergence rale is about (1 - 2p + σp2 ) which is nearly optimal and independent of the parameter τ, where σ τ O((1 +H )(1 + ln(H / h))2 ). 0 【 p 【 1 / σ,τ,h,H are the time step size, finite element parameter and subdomain diameter, respectively.
文摘A modified sequential linear programming algorithm is presented, whose subproblem is always solvable, for the extended linear complementarity problem (XLCP), the global convergence of the algorithm under assumption of X-row sufficiency or X-colunm monotonicity is proved. As a result, a sufficient condition for existence and boundedness of solution to the XLCP are obtained.
文摘In this paper, we demonstrate that the finite-dimensional approximations to the solutions of a linear bond-based peridynamic boundary value problem converge to the exact solution exponentially with the analyticity assumption of the forcing term, therefore greatly improve the convergence rate derived in literature.
文摘The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.
基金Supported by the National Natural Science Foundation of China(11801396)National College Students Innovation and Entrepreneurship Training Project(202210332019Z)。
文摘This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations.We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework.The convergence rate is valid independent of the small parameter.Furthermore,we establish a sharper L^(2)-error estimate if the true solution has a special regular component.Numerical experiments are also given.
文摘In this paper,we study an extragradient algorithm for approximating solutions of quasi-equilibrium problems in Banach spaces.We prove strong convergence of the sequence generated by the extragradient method to a solution of the quasi-equilibrium problem.
文摘We propose and analyze an hp-adaptive DG-FEM algorithm, termed hp-ADFEM, and its one-dimensional realization, which is convergent, instance optimal, and h- and p-robust. The procedure consists of iterating two routines:one hinges on Binev's algorithm for the adaptive hp-approximation of a given function, and finds a near-best hp-approximation of the current discrete solution and data to a desired accuracy;the other one improves the discrete solution to a finer but comparable accuracy, by iteratively applying D?rfler marking and h refinement.
基金The Major State Basic Research Program (19871051) of China the NNSF (19972039) of China and Yantai University Doctor Foundation (SX03B20).
文摘In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
基金The subject is supported by Natural Science Foundation of China and Natural Science Foundation of Shandong Province.
文摘In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale under certain conditions. Zhang’s algorithm hasn’t these properties.
基金supported by the National Natural Science Foundation of China with Grant Nos.12161030 and 12261073。
文摘Our goal is to improve the convergence theory of the one-step modulus-based synchronous multisplitting(MSM)and the two-step modulus-based synchronous multisplitting(TMSM)iteration methods for a class of nondifferentiable nonlinear complementarity problems(NCPs)with H_(+)-matrices.The analysis is developed and the results are renewed under some conditions weakened than before.