As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
A constrained model predictive control (MPC) algorithm for networked control system with data packet dropout is proposed in this paper. A buffer is designed to store the predicted control sequence between controller...A constrained model predictive control (MPC) algorithm for networked control system with data packet dropout is proposed in this paper. A buffer is designed to store the predicted control sequence between controller and actuator. It is shown that if the control horizon of MPC is not less than the number of data packets lost continuously, feasibility of MPC at initial time implies asymptotical stability of the closed-loop system. A simulation example illustrates the effectiveness of the proposed approach.展开更多
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network a...Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.展开更多
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ...This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.展开更多
The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper. Since satisfactory transient performance is an important factor, multiple models are requ...The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper. Since satisfactory transient performance is an important factor, multiple models are required as these parameters change abruptly in the parameter space. In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems. We demonstrate that the latter approach is better than the former.展开更多
Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of qua...Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.展开更多
Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and c...Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner.展开更多
This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By ...This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler.展开更多
In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time in...In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time interval, the relation between the network states and the network-induced delays is modelled as a discrete-time hidden Markov model (DTHMM). The expectation maximization (EM) algorithm is introduced to derive the maximumlikelihood estimation (MLE) of the parameters of the DTHMM. Based on the derived DTHMM, the Viterbi algorithm is introduced to predict the controller-to-actuator (C-A) delay during the current sampling period. The simulation experiments demonstrate the effectiveness of the modelling and predicting methods proposed.展开更多
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base...This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.展开更多
The scope of this paper broadly spans in two areas: system identification of resonant system and design of an efficient control scheme suitable for resonant systems. Use of filters based on orthogonal basis functions...The scope of this paper broadly spans in two areas: system identification of resonant system and design of an efficient control scheme suitable for resonant systems. Use of filters based on orthogonal basis functions (OBF) have been advocated for modelling of resonant process. Kautz filter has been identified as best suited OBF for this purpose. A state space based system identification technique using Kautz filters, viz. Kautz model, has been demonstrated. Model based controllers are believed to be more efficient than classical controllers because explicit use of process model is essential with these modelling techniques. Extensive literature search concludes that very few reports are available which explore use of the model based control studies on resonant system. Two such model based controllers are considered in this work, viz. model predictive controller and internal model controller. A model predictive control algorithm has been developed using the Kautz model. The efficacy of the model and the controller has been verified by two case studies, viz. linear second order underdamped process and a mildly nonlinear magnetic ball suspension system. Comparative assessment of performances of these controllers in those case studies have been carried out.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its...The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its design model is verified on the state-space model of EHSAS by using simulation program SIMULINK. Real data used to test the system. Simulation results give a good agreement for the controller and also for the state-space model.展开更多
This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics i...This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.展开更多
Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is ...Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o...Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.展开更多
A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced...A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.展开更多
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金supported by National Natural Science Foundation (No.60874052)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality and the Scientific Research Common Program of Beijing Municipal Commission of Education (No.KM200710009010)
文摘A constrained model predictive control (MPC) algorithm for networked control system with data packet dropout is proposed in this paper. A buffer is designed to store the predicted control sequence between controller and actuator. It is shown that if the control horizon of MPC is not less than the number of data packets lost continuously, feasibility of MPC at initial time implies asymptotical stability of the closed-loop system. A simulation example illustrates the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (60474076)Natural Science Foundationof Jiangxi Province, China (2007GZS0899)Scientific Research Foundation of Jiangxi Provincial Education Department, China(GJJ08238).
文摘Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
基金Projects(61573052,61273132)supported by the National Natural Science Foundation of China
文摘This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.
文摘The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper. Since satisfactory transient performance is an important factor, multiple models are required as these parameters change abruptly in the parameter space. In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems. We demonstrate that the latter approach is better than the former.
文摘Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.
基金supported by National Natural Science Foundation of China (Grant No. 11102019)
文摘Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner.
基金Supported by the National Natural Science Foundation of China(61472136)the Best Youth of the Education Department of Hunan Province(16B023)
文摘This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler.
基金supported in part by the National Natural Science Foundation of China (60774098 60843003+3 种基金 50905172)the Science Foundation of Anhui Province (090412071 090412040)the University of Science and Technology of China Initiative Foundation
文摘In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time interval, the relation between the network states and the network-induced delays is modelled as a discrete-time hidden Markov model (DTHMM). The expectation maximization (EM) algorithm is introduced to derive the maximumlikelihood estimation (MLE) of the parameters of the DTHMM. Based on the derived DTHMM, the Viterbi algorithm is introduced to predict the controller-to-actuator (C-A) delay during the current sampling period. The simulation experiments demonstrate the effectiveness of the modelling and predicting methods proposed.
文摘This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
文摘The scope of this paper broadly spans in two areas: system identification of resonant system and design of an efficient control scheme suitable for resonant systems. Use of filters based on orthogonal basis functions (OBF) have been advocated for modelling of resonant process. Kautz filter has been identified as best suited OBF for this purpose. A state space based system identification technique using Kautz filters, viz. Kautz model, has been demonstrated. Model based controllers are believed to be more efficient than classical controllers because explicit use of process model is essential with these modelling techniques. Extensive literature search concludes that very few reports are available which explore use of the model based control studies on resonant system. Two such model based controllers are considered in this work, viz. model predictive controller and internal model controller. A model predictive control algorithm has been developed using the Kautz model. The efficacy of the model and the controller has been verified by two case studies, viz. linear second order underdamped process and a mildly nonlinear magnetic ball suspension system. Comparative assessment of performances of these controllers in those case studies have been carried out.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.
文摘The angular position controller is system (EHSAS) to control the output of the rotary applied to electro-hydraulic servo actuator actuator. It works as a compensator based on the frequency response of the EHSAS. Its design model is verified on the state-space model of EHSAS by using simulation program SIMULINK. Real data used to test the system. Simulation results give a good agreement for the controller and also for the state-space model.
文摘This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary,and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.
基金This work was supported in part by the Chinese Outstanding Youth Science Foundation (No. 69925308)supported by Program for ChangjiangScholars and Innovative Research Team in University
文摘Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金supported by National Natural Science Foundation of China(Grant No.51175511)
文摘Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.N110304008)the National Natural Science Foundation of China(Grant No.61374137)
文摘A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.