A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l...In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.展开更多
A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which i...A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
The author studies a stochastic linear quadratic(SLQ for short)optimal control problem for systems governed by stochastic evolution equations,where the control operator in the drift term may be unbounded.Under the con...The author studies a stochastic linear quadratic(SLQ for short)optimal control problem for systems governed by stochastic evolution equations,where the control operator in the drift term may be unbounded.Under the condition that the cost functional is uniformly convex,the well-posedness of the operator-valued Riccati equation is proved.Based on that,the optimal feedback control of the control problem is given.展开更多
This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain.Such problems usually possess low regularity in the state variable due to t...This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain.Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain.The low regularity of the solution allows the finite element approximations to converge at lower orders.We prove the existence,uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition.For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables,whereas piecewise constant functions are employed to approximate the control variable.The temporal discretization is based on the implicit Euler scheme.We derive both a priori and a posteriori error bounds for the state,control and co-state variables.Numerical experiments are performed to validate the theoretical rates of convergence.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty...This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.展开更多
This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optim...This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness.展开更多
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discre...In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.展开更多
In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k...In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.展开更多
In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori er...In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.展开更多
Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of...Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.展开更多
This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||...This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.展开更多
This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spac...This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.展开更多
In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and effici...In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.展开更多
In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-...In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.
文摘A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
基金supported by the National Natural Science Foundation of China(Nos.11971334,12025105)。
文摘The author studies a stochastic linear quadratic(SLQ for short)optimal control problem for systems governed by stochastic evolution equations,where the control operator in the drift term may be unbounded.Under the condition that the cost functional is uniformly convex,the well-posedness of the operator-valued Riccati equation is proved.Based on that,the optimal feedback control of the control problem is given.
文摘This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain.Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain.The low regularity of the solution allows the finite element approximations to converge at lower orders.We prove the existence,uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition.For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables,whereas piecewise constant functions are employed to approximate the control variable.The temporal discretization is based on the implicit Euler scheme.We derive both a priori and a posteriori error bounds for the state,control and co-state variables.Numerical experiments are performed to validate the theoretical rates of convergence.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金co-supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF21-BJ-J-1180)。
文摘This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.
基金supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF-21-BJ-J-1180).
文摘This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness.
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
基金supported by National Natural Science Foundation of China(Grant Nos.11261011,11271145 and 11031006)Foundation of Guizhou Science and Technology Department(Grant No.[2011]2098)+2 种基金Foundation for Talent Introduction of Guangdong Provincial UniversitySpecialized Research Fund for the Doctoral Program of Higher Education(Grant No. 20114407110009)the Project of Department of Education of Guangdong Province(Grant No. 2012KJCX0036)
文摘In this paper,optimize-then-discretize,variational discretization and the finite volume method are applied to solve the distributed optimal control problems governed by a second order hyperbolic equation.A semi-discrete optimal system is obtained.We prove the existence and uniqueness of the solution to the semidiscrete optimal system and obtain the optimal order error estimates in L ∞(J;L 2)-and L ∞(J;H 1)-norm.Numerical experiments are presented to test these theoretical results.
基金supported by National Natural Science Foundation of China(Grant No.10971074)Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20114407110009)
文摘In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.
基金National Nature Science Foundation under Grants 60474027 and 10771211the National Basic Research Program under the Grant 2005CB321701
文摘In this paper, we discuss the a posteriori error estimate of the finite element approximation for the boundary control problems governed by the parabolic partial differential equations. Three different a posteriori error estimators are provided for the parabolic boundary control problems with the observations of the distributed state, the boundary state and the final state. It is proven that these estimators are reliable bounds of the finite element approximation errors, which can be used as the indicators of the mesh refinement in adaptive finite element methods.
基金supported by Guangdong Provincial"Zhujiang Scholar Award Project"National Science Foundation of China 10671163+2 种基金the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department 06A069Guangxi Natural Science Foundation 0575029
文摘Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.
基金supported by National Science Foundation of ChinaFoundation for Talent Introduction of Guangdong Provincial University+2 种基金Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provincial Innovation Foundation for Postgraduate under Grant(1x2009B120)
文摘This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.
基金supported by the National Natural Science Foundation of Chinaunder Grant No.11271145Foundation for Talent Introduction of Guangdong Provincial University+3 种基金Fund for the Doctoral Program of Higher Education under Grant No.20114407110009the Project of Department of Education of Guangdong Province under Grant No.2012KJCX0036supported by Hunan Education Department Key Project 10A117the National Natural Science Foundation of China under Grant Nos.11126304 and 11201397
文摘This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.
文摘In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.
基金This work is supported by National Science Foundation of China,Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009).
文摘In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.