期刊文献+
共找到697篇文章
< 1 2 35 >
每页显示 20 50 100
TEMPERATURE FIELD CONTROL PRINCIPLE AND CONTROL MODELS FOR CRYOGENIC MACHINING SYSTEM
1
作者 Liu Fei Kang Geweng +1 位作者 Xu Zongjun Chongqing University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第3期222-227,共17页
Cryogenic machining is a new technology which makes use of the special mechanicalprcperties of niaterials in a cryogenic or a 'super cold' state for machining. The control of acryogenic machining system(CMS)i... Cryogenic machining is a new technology which makes use of the special mechanicalprcperties of niaterials in a cryogenic or a 'super cold' state for machining. The control of acryogenic machining system(CMS)is one of the key problems which need to be solved for practi-cal cryogenic machining A temperature field control principle is presented which calculates theheat source temperature in the light of the tool temperature field information, and a control mod-el of three-dimensional dynamic temperature field for CMS is established, and the boundary con-ditions and the heat source of temperature field in orthogonal cutting are discussed. Based on theinvestigation of the control feature and technique. a prototype system for controlling CMS is crea-ted. 展开更多
关键词 Cryogenic-machining Temperature field control model control system
全文增补中
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models 被引量:3
2
作者 Meng-Ling Wang Ning Li Shao-Yuan Li 《International Journal of Automation and computing》 EI 2011年第1期1-7,共7页
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ... In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies. 展开更多
关键词 Spatially-distributed system principal component analysis (PCA) time/space separation dimension reduction model predictive control (MPC).
在线阅读 下载PDF
Predictive control of a class of bilinear systems based on global off-line models 被引量:1
3
作者 ZHANG Ri-dong WANG Shu-qing 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期1984-1988,共5页
A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machi... A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machine (SVM) dynamic approximation with analytical control law derived. The method does not need on-line parameters estimation because the system’s internal model has been transformed into an off-line global model. Compared with other traditional methods, this control law reduces on-line parameter estimating burden. In addition, its overall linear behavior treating method allows an analytical control law available and avoids on-line nonlinear optimization. Simulation results are presented in the article to illustrate the efficiency of the method. 展开更多
关键词 Bilinear systems Model predictive control (MPC) Adaptive control Support vector machine (SVM)
在线阅读 下载PDF
Model-free Predictive Control of Motor Drives:A Review 被引量:2
4
作者 Chenhui Zhou Yongchang Zhang Haitao Yang 《CES Transactions on Electrical Machines and Systems》 2025年第1期76-90,共15页
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s... Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments. 展开更多
关键词 Model predictive control Motor drives Parameter robustness Model-free predictive control
在线阅读 下载PDF
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
5
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Cooperative maximum adhesion tracking control for multi-motor electric locomotives 被引量:1
6
作者 Leiting Zhao Yongxiang Wang +3 位作者 Kan Liu Liran Li Jingyuan Zhan Qingliang Liu 《Railway Sciences》 2025年第1期22-36,共15页
Purpose–This study aims to propose a cooperative adhesion control method for trains with multiple motors electric locomotives.The method is intended to optimize the output torque of each motor,maximize the utilizatio... Purpose–This study aims to propose a cooperative adhesion control method for trains with multiple motors electric locomotives.The method is intended to optimize the output torque of each motor,maximize the utilization of train adhesion within the total torque command,reduce the train skidding/sliding phenomenon and achieve optimal adhesion utilization for each axle,thus realizing the optimal allocation of the multi-motor electric locomotives.Design/methodology/approach–In this study,a model predictive control(MPC)-based cooperative maximum adhesion tracking control method for multi-motor electric locomotives is presented.Firstly,train traction system with multiple motors is constructed in accordance with Newton’s second law.These equations include the train dynamics equations,the axle dynamics equations,and the wheel-rail adhesion coefficient equations.Then,a new MPC-based multi-axle adhesion co-optimization method is put forward.This method calculates the optimal output torque through real-time iteration based on the known reference slip speed to achieve multi-axle co-optimization under different circumstances.Findings–This paper presents a MPC system designed for the cooperative control of multi-axle adhesion.The results indicate that the proposed control system is able to optimize the adhesion of multiple axles under numerous different conditions and achieve the optimal power distribution based on the reduction of train skidding/sliding.Originality/value–This study presents a novel cooperative adhesion tracking control scheme.It is designed for multi-motor electric locomotives,which has rarely been studied before.And simulations are carried out in different conditions,including variable surfaces and motor failing. 展开更多
关键词 Cooperative control Adhesion control Model predictive control Slip prevent
在线阅读 下载PDF
Modeling and control of automatic voltage regulation for a hydropower plant using advanced model predictive control 被引量:1
7
作者 Ebunle Akupan Rene Willy Stephen Tounsi Fokui 《Global Energy Interconnection》 2025年第2期269-285,共17页
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont... Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations. 展开更多
关键词 Automatic voltage regulation Artificial bee colony Evolutionary techniques Model predictive control PID controller HYDROPOWER
在线阅读 下载PDF
Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control 被引量:1
8
作者 Yuanxiang Luo Linshu Cai Nan Zhang 《Energy Engineering》 2025年第2期765-783,共19页
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct... Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system. 展开更多
关键词 Doubly-fed pumped storage unit model predictive control proportional-differential control link frequency regulation
在线阅读 下载PDF
Automatic landing of fixed-wing aircraft with constrained algebraic model predictive control
9
作者 Talha Ulukır Ufuk Dursun İlkerÜstoğlu 《Control Theory and Technology》 2025年第4期688-701,共14页
This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,t... This article proposes an algebraic model predictive control(MPC)method for automatic landing.While defining the constraint functions in the optimization problem,the tangent hyperbolic function is preferred.Therefore,the optimization problem turns into an unconstrained,continuous,and differentiable form.An analytical two-step method is also proposed to solve the rest of the problem.In the first step,it is assumed that only input constraints are active and states are unconstrained.The optimal solution for this case is calculated directly with the optimality condition.The calculated control signal is revised in the second step according to system dynamics and state constraints.Simulation results of the auto-landing system show that the MPC computation speed is significantly increased by the new algebraic MPC(AMPC)without compromising the control performance,which makes the method realistic for using MPC in systems with high-speed changing dynamics. 展开更多
关键词 Automatic landing Model predictive control AUTOPILOT Auto-flight Algebraic model predictive control
原文传递
Variable Stability Control Approach for Angle Following of Steer-by-wire System
10
作者 Lin He Ziang Xu +3 位作者 Yujiang Wei Shanshan Peng Huasheng Feng Qin Shi 《Chinese Journal of Mechanical Engineering》 2025年第5期140-155,共16页
It is particularly challenging to develop a new control theory like human intelligence,as human cognition and decisionmaking are variable in changing environments.In this article,the idea of variable stability is adop... It is particularly challenging to develop a new control theory like human intelligence,as human cognition and decisionmaking are variable in changing environments.In this article,the idea of variable stability is adopted to design a human-like control algorithm,referred to as variable stability control.A variable model perturbation put into the system dynamics model is computed by model game control,which simulates changes in human cognition.Lyapunov stability control is employed to formulate a backstepping control law that mimics the underlying logic algorithm in human decision-making.Some variable algorithm parameters embedded into the control law are calculated using model predictive control,which imitates dynamic tuning in human decision-making.From another perspective,variable stability control is an algorithm-hybrid control approach validated in a steer-by-wire system for angle tracking.According to the experimental results,variable stability control is a promising candidate for angle tracking in steer-by-wire systems. 展开更多
关键词 Human-like control Model predictive control Backstepping control Model game control Cournot equilibrium
在线阅读 下载PDF
Control Methods Study of Rail-Mounted W-Beam Guardrail Inspection Robot
11
作者 CAO Jingming WANG Huifeng +4 位作者 ZHANG Chenlu GAO Rong WANG Xiaoyan HUANG He GUAN Limin 《Wuhan University Journal of Natural Sciences》 2025年第4期379-391,共13页
To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses ve... To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses verify the robot's structural reliability and driving feasibility.Based on the leader-follower model,a triangular collaborative tracking model is developed,and a linear time-varying model predictive controll(LTV-MPC)is designed to achieve smooth and precise collaborative control.For obstacle crossing,an acceleration reference model and a gradient-based adaptive law are proposed,leading to a model reference adaptive controll(MRAC)that effectively suppresses vibrations and ensures synchronous control.Simulation results show that the MPC achieves a 0.415%overshoot and a 0.344 m steady-state accuracy,while also reducing the intensity of speed fluctuations by 35%.The MRAC ensures smooth obstacle-crossing speeds and adaptive strategy switching,validating the reliability and practicality of the rail-mounted robot under complex working conditions. 展开更多
关键词 rail-mounted inspection robot mechanical analysis model predictive control(MPC) model reference adaptive control(MRAC)
原文传递
Path Tracking Robust Control Strategy for Intelligent Vehicle Based on Force-Driven with MPC and H_(∞)
12
作者 Qiangqiang Yao Yiheng Shi +1 位作者 Peng Hang Ying Tian 《Chinese Journal of Mechanical Engineering》 2025年第5期351-361,共11页
Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature ... Due to errors in vehicle dynamics modeling,uncertainty in model parameters,and disturbances from curvature,the performance of the path tracking controller is poor or even unstable under high-speed and large-curvature conditions.Therefore,a path tracking robust control strategy based on force-driven H_(∞)and MPC is proposed.To fully exploit the nonlinear dynamics characteristics of tires,a force-driven state space model of a path tracking system based on a linear time-varying tire model is established;the H_(∞)and MPC methods are used to design a robust controller.Considering disturbance and system state constraints,the robust control constraint model based on LMI is established.Finally,the proposed controller is validated through joint simulations using CarSim and MATLAB.The results show that the maximum lateral deviation is reduced by 17.07%,and the maximum course angle deviation is reduced by 13.04%under large curvature disturbance conditions.The maximum lateral deviation is reduced by 27.85%,and the maximum course angle deviation is reduced by 31.17%under conditions of uncertain road adhesion coefficients.Based on the controller’s performance,the proposed controller effectively mitigates modeling errors,parameter uncertainties,and curvature disturbances. 展开更多
关键词 Intelligent vehicles Model predictive control Robust control Path tracking Force-driven
在线阅读 下载PDF
Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System
13
作者 LI Songyang CHEN Wenbo WAN Heng 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期270-279,共10页
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands... Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) model predictive control(MPC) data-driven model predictive control(DDMPC)
原文传递
Adaptive Disturbance Rejection Balance Control for Humanoid Robots via Variable-Inertia Centroidal MPC
14
作者 Xiang Meng Zhangguo Yu +5 位作者 Tao Han Xiaofeng Liu Qingqing Li Xuechao Chen Fei Meng Qiang Huang 《Journal of Bionic Engineering》 2025年第6期2885-2899,共15页
The problem of disturbance rejection in humanoid robots has been properly studied,with most prior work focusing on hip-ankle-stepping compliance control strategies or whole-body inverse dynamics control.This paper pre... The problem of disturbance rejection in humanoid robots has been properly studied,with most prior work focusing on hip-ankle-stepping compliance control strategies or whole-body inverse dynamics control.This paper presents an adaptive disturbance rejection balance controller based on a Variable-inertia Centroidal Model Predictive Control(ViC-MPC)approach,designed to address both minor disturbances that affect standing balance and major disturbances requiring stepping adjustments.The controller also facilitates reliable balance recovery after stepping adjustments.The humanoid robot is modeled as a spatial variable-inertia ellipsoid,representing the distribution of centroidal dynamics,with the contact wrenches optimized in real-time through a customized MPC formulation.Inspired by capturability-based constraints,we propose an adaptive dynamic stability transition strategy.This strategy is activated based on the Retrospective Horizon Average Centroidal Velocity(RHACV)and the Capture Point(CP),ensuring effective stepping adjustments and disturbance rejection.With the torque-controlled humanoid robot BHR8P,extensive simulation and experimental results demonstrate the effectiveness of the proposed method,highlighting its capability to adapt to and recover from various disturbances with improved stability. 展开更多
关键词 Humanoid robots Locomotion control Model predictive control Centroidal dynamics
在线阅读 下载PDF
A Self-Healing Predictive Control Method for Discrete-Time Nonlinear Systems
15
作者 Shulei Zhang Runda Jia 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期668-682,共15页
In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal cas... In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process. 展开更多
关键词 control barrier function nonlinear system process safety robust model predictive control self-healing control
在线阅读 下载PDF
Optimal Scheduling and On-the-Fly Flexible Control of Integrated Energy Systems for Residential Buildings Considering Photovoltaic Prediction Errors
16
作者 Ziqing Wei Xiaoqiang Zhai Ruzhu Wang 《Engineering》 2025年第10期104-115,共12页
The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due t... The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due to fluctuations in renewable energy generation.Leveraging building flexibility to address these power fluctuations within IES is a promising strategy,which requires coordinated control between air-conditioning systems and other IES components.This study proposes a cross-time-scale control framework that contains optimal scheduling and on-the-fly flexible control to reduce the cost impacts of a residential IES system equipped with photovoltaic(PV)panels,batteries,a heat pump,and a domestic hot water tank.The method involves three key steps:solar irradiance prediction,day-ahead optimal scheduling of energy storage,and intra-day flexible control of the heat pump.The method is validated through a high-fidelity residential building model with actual weather and energy usage data in Frankfurt,Germany.Results reveal that the proposed method limits the cost increase to just 2.67% compared to the day-ahead schedule,whereas the cost could increase by 7.39% without the flexible control.Additionally,computational efficiency is enhanced by transforming the mixed-integer programming(MIP)into nonlinear programming(NLP)problem via introducing action-exclusive constraints.This approach offers valuable support for residential IES operations. 展开更多
关键词 Integrated energy system Residential building flexibility Photovoltaic prediction errors Heat pump Model predictive control
在线阅读 下载PDF
Research on Hierarchical Motion Control of Corner Module Configuration Intelligent Electric Vehicle
17
作者 Yongjun Yan Chenshuo Zhang +5 位作者 Pengyu Xue Hongliang Wang Dawei Pi Wenfu Xue Ye-Hwa Chen Xianhui Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期396-410,共15页
The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks an... The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system. 展开更多
关键词 Corner module Four-wheel steering Hierarchical motion control Model predictive control Driving risk field
在线阅读 下载PDF
Multi-mode Evasion Assistance Control Method for Intelligent Distributed-drive Electric Vehicle Considering Human Driver’s Reaction
18
作者 Bo Leng Zhuoren Li +4 位作者 Ming Liu Ce Yang Yi Luo Amir Khajepour Lu Xiong 《Chinese Journal of Mechanical Engineering》 2025年第5期239-257,共19页
Vehicle collision avoidance(CA)has been widely studied to improve road traffic safety.However,most evasion assistance control methods face challenges in effectively coordinating collision avoidance safety and human-ma... Vehicle collision avoidance(CA)has been widely studied to improve road traffic safety.However,most evasion assistance control methods face challenges in effectively coordinating collision avoidance safety and human-machine interaction conflict.This paper introduces a novel multi-mode evasion assistance control(MEAC)method for intelligent distributed-drive electric vehicles.A reference safety area is established considering the vehicle safety and stability requirements,which serves as a guiding principle for evading obstacles.The proposed method includes two control modes:Shared-EAC(S-EAC)and Emergency-EAC(E-EAC).In S-EAC,an integrated human-machine authority allocation mechanism is designed to mitigate conflicts between human drivers and the control system during collision avoidance.The E-EAC mode is tailored for situations where the driver has no collision avoidance behavior and utilizes model predictive control to generate additional yaw moments for collision avoidance.Simulation and experimental results indicate that the proposed method reduces human-machine conflict and assists the driver in safe collision avoidance in the S-EAC mode under various driver conditions.In addition,it enhances the vehicle responsiveness and reduces the extent of emergency steering in the E-EAC mode while improving the safety and stability during the collision avoidance process. 展开更多
关键词 Intelligent vehicles Distributed-drive electric vehicle Collision avoidance Evasion assistance control Model predictive control
在线阅读 下载PDF
Dynamics and control for capture mode of drag-free satellite considering nonlinear electrostatic effect
19
作者 Ti CHEN Songyuan HE +3 位作者 Yankai WANG Zhengtao WEI Yingjie CHEN J.TAYEBI 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1631-1648,共18页
A drag-free satellite is an important platform for space-borne gravitational wave(GW)observation.To achieve the high-precision control of a drag-free satellite in practical engineering,an accurate dynamic model is ess... A drag-free satellite is an important platform for space-borne gravitational wave(GW)observation.To achieve the high-precision control of a drag-free satellite in practical engineering,an accurate dynamic model is essential.This paper presents a nonlinear model of the electrostatic effect between a satellite and a test mass(TM),and designs a model predictive controller based on the drag-free satellite model with the nonlinear electrostatic effect.To determine the analytical form of the electrostatic effect,a comprehensive theoretical analysis is performed for gravitational reference sensors(GRSs).An electrostatic force and a torque are simulated with the displacement as a varying parameter through a commercial software.Then,the results are fitted to derive the nonlinear expressions of the electrostatic effect.The model predictive controllers based on the models with the nonlinear and linear electrostatic effects are designed in the capture mode.Finally,the control results are given to show the advantages of the nonlinear electrostatic effect. 展开更多
关键词 drag-free satellite nonlinear electrostatic effect capture mode model predictive control(MPC)
在线阅读 下载PDF
Cascade explicit tube model predictive controller:application for a multi-robot system
20
作者 Ehsan Soleimani Amirhossein Nikoofard Erfan Nejabat 《Control Theory and Technology》 2025年第2期237-252,共16页
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),... In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain. 展开更多
关键词 Explicit model predictive control(MPC) Tube MPC Cascade controller QUADROTOR Multi-agent system Distributed formation control
原文传递
上一页 1 2 35 下一页 到第
使用帮助 返回顶部