This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linea...This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linear model(SGLM),elastic net(ENET),partial least square(PLS),ridge regression,support vector machine(SVM),classification and regression trees(CART),bagged CART,and random forest(RF)for gully erosion susceptibility mapping(GESM)in Iran.The location of 462 previously existing gully erosion sites were mapped through widespread field investigations,of which 70%(323)and 30%(139)of observations were arbitrarily divided for algorithm calibration and validation.Twelve controlling factors for gully erosion,namely,soil texture,annual mean rainfall,digital elevation model(DEM),drainage density,slope,lithology,topographic wetness index(TWI),distance from rivers,aspect,distance from roads,plan curvature,and profile curvature were ranked in terms of their importance using each MLA.The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE(root mean square error),MAE(mean absolute error),and R-squared.Based on the comparisons among MLA,the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared,and was therefore selected as the best model.The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance.According to the GESM generated using RF,most of the study area is predicted to have a low(53.72%)or moderate(29.65%)susceptibility to gully erosion,whereas only a small area is identified to have a high(12.56%)or very high(4.07%)susceptibility.The outcome generated by RF model is validated using the ROC(Receiver Operating Characteristics)curve approach,which returned an area under the curve(AUC)of 0.985,proving the excellent forecasting ability of the model.The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion.展开更多
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e...Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace f...Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.展开更多
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
The power transfer capability of the smart transmission gridconnected networks needs to be reduced by inter-area oscillations.Due to the fact that inter-area modes of oscillations detain and make instability of power ...The power transfer capability of the smart transmission gridconnected networks needs to be reduced by inter-area oscillations.Due to the fact that inter-area modes of oscillations detain and make instability of power transmission networks.This fact is more noticeable in smart grid-connected systems.The smart grid infrastructure has more renewable energy resources installed for its operation.To overcome this problem,a deep learning widearea controller is proposed for real-time parameter control and smart power grid resilience on oscillations inter-area modes.The proposed Deep Wide Area Controller(DWAC)uses the Deep Belief Network(DBN).The network weights are updated based on real-time data from Phasor measurement units.Resilience assessment based on failure probability,financial impact,and time-series data in grid failure management determine the norm H2.To demonstrate the effectiveness of the proposed framework,a time-domain simulation case study based on the IEEE-39 bus system was performed.For a one-channel attack on the test system,the resiliency index increased to 0.962,and inter-area dampingξwas reduced to 0.005.The obtained results validate the proposed deep learning algorithm’s efficiency on damping inter-area and local oscillation on the 2-channel attack as well.Results also offer robust management of power system resilience and timely control of the operating conditions.展开更多
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,s...Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.展开更多
The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet ...The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems,while pure edge computing faces resource constraints that limit processing capabilities.This paper addresses these challenges by proposing a novel Deep Reinforcement Learning(DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments.Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency.The framework introduces three key innovations:(1)a DRL-based dynamic priority assignmentmechanism that learns fromsystem behavior,(2)a hybrid concurrency control protocol combining local edge validation with global cloud coordination,and(3)an integrated mathematical model that formalizes sensor-driven transactions across edge-cloud architectures.Extensive simulations across diverse workload scenarios demonstrate significant quantitative improvements:40%latency reduction,25%throughput increase,85%resource utilization(compared to 60%for heuristicmethods),40%reduction in energy consumption(300 vs.500 J per task),and 50%improvement in scalability factor(1.8 vs.1.2 for EDF)compared to state-of-the-art heuristic and meta-heuristic approaches.These results establish the framework as a robust solution for large-scale IoT and autonomous applications requiring real-time processing with consistency guarantees.展开更多
Measurement-while-drilling(MWD)and guidance technologies have been extensively deployed in the exploitation of oil,natural gas,and other energy resources.Conventional control approaches are plagued by challenges,inclu...Measurement-while-drilling(MWD)and guidance technologies have been extensively deployed in the exploitation of oil,natural gas,and other energy resources.Conventional control approaches are plagued by challenges,including limited anti-interference capabilities and the insufficient generalization of decision-making experience.To address the intricate problem of directional well trajectory control,an intelligent algorithm design framework grounded in the high-level interaction mechanism between geology and engineering is put forward.This framework aims to facilitate the rapid batch migration and update of drilling strategies.The proposed directional well trajectory control method comprehensively considers the multi-source heterogeneous attributes of drilling experience data,leverages the generative simulation of the geological drilling environment,and promptly constructs a directional well trajectory control model with self-adaptive capabilities to environmental variations.This construction is carried out based on three hierarchical levels:“offline pre-drilling learning,online during-drilling interaction,and post-drilling model transfer”.Simulation results indicate that the guidance model derived from this method demonstrates remarkable generalization performance and accuracy.It can significantly boost the adaptability of the control algorithm to diverse environments and enhance the penetration rate of the target reservoir during drilling operations.展开更多
This paper investigates a multiplayer Pareto game for affine nonlinear stochastic systems disturbed by both external and the internal multiplicative noises.The Pareto cooperative optimal strategies with the H_(∞) con...This paper investigates a multiplayer Pareto game for affine nonlinear stochastic systems disturbed by both external and the internal multiplicative noises.The Pareto cooperative optimal strategies with the H_(∞) constraint are resolved by integrating H_(2)/H_(∞) theory with Pareto game theory.First,a nonlinear stochastic bounded real lemma(SBRL)is derived,explicitly accounting for non-zero initial conditions.Through the analysis of four cross-coupled Hamilton-Jacobi equations(HJEs),we establish necessary and sufficient conditions for the existence of Pareto optimal strategies with the H_(∞) constraint.Secondly,to address the complexity of solving these nonlinear partial differential HJEs,we propose a neural network(NN)framework with synchronous tuning rules for the actor,critic,and disturbance components,based on a reinforcement learning(RL)approach.The designed tuning rules ensure convergence of the actor-critic-disturbance components to the desired values,enabling the realization of robust Pareto control strategies.The convergence of the proposed algorithm is rigorously analyzed using a constructed Lyapunov function for the NN weight errors.Finally,a numerical simulation example is provided to demonstrate the effectiveness of the proposed methods and main results.展开更多
The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the ...The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control(ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer(ESO) based adaptive ILC approach is proposed in the frequency domain.Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method.展开更多
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of...Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry.展开更多
This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditiona...This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system.展开更多
基金supported by the College of Agriculture,Shiraz University(Grant No.97GRC1M271143)funding from the UK Biotechnology and Biological Sciences Research Council(BBSRC)funded by BBSRC grant award BBS/E/C/000I0330–Soil to Nutrition project 3–Sustainable intensification:optimisation at multiple scales。
文摘This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linear model(SGLM),elastic net(ENET),partial least square(PLS),ridge regression,support vector machine(SVM),classification and regression trees(CART),bagged CART,and random forest(RF)for gully erosion susceptibility mapping(GESM)in Iran.The location of 462 previously existing gully erosion sites were mapped through widespread field investigations,of which 70%(323)and 30%(139)of observations were arbitrarily divided for algorithm calibration and validation.Twelve controlling factors for gully erosion,namely,soil texture,annual mean rainfall,digital elevation model(DEM),drainage density,slope,lithology,topographic wetness index(TWI),distance from rivers,aspect,distance from roads,plan curvature,and profile curvature were ranked in terms of their importance using each MLA.The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE(root mean square error),MAE(mean absolute error),and R-squared.Based on the comparisons among MLA,the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared,and was therefore selected as the best model.The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance.According to the GESM generated using RF,most of the study area is predicted to have a low(53.72%)or moderate(29.65%)susceptibility to gully erosion,whereas only a small area is identified to have a high(12.56%)or very high(4.07%)susceptibility.The outcome generated by RF model is validated using the ROC(Receiver Operating Characteristics)curve approach,which returned an area under the curve(AUC)of 0.985,proving the excellent forecasting ability of the model.The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20091102120038)
文摘Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金This work was supported by the National Natural Science Foundation of China(No.62022061)Tianjin Natural Science Foundation(No.20JCYBJC00880)Beijing Key Laboratory Open Fund of Long-Life Technology of Precise Rotation and Transmission Mechanisms.
文摘Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
文摘The power transfer capability of the smart transmission gridconnected networks needs to be reduced by inter-area oscillations.Due to the fact that inter-area modes of oscillations detain and make instability of power transmission networks.This fact is more noticeable in smart grid-connected systems.The smart grid infrastructure has more renewable energy resources installed for its operation.To overcome this problem,a deep learning widearea controller is proposed for real-time parameter control and smart power grid resilience on oscillations inter-area modes.The proposed Deep Wide Area Controller(DWAC)uses the Deep Belief Network(DBN).The network weights are updated based on real-time data from Phasor measurement units.Resilience assessment based on failure probability,financial impact,and time-series data in grid failure management determine the norm H2.To demonstrate the effectiveness of the proposed framework,a time-domain simulation case study based on the IEEE-39 bus system was performed.For a one-channel attack on the test system,the resiliency index increased to 0.962,and inter-area dampingξwas reduced to 0.005.The obtained results validate the proposed deep learning algorithm’s efficiency on damping inter-area and local oscillation on the 2-channel attack as well.Results also offer robust management of power system resilience and timely control of the operating conditions.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金The National Natural Science Foundation of China(62173172).
文摘Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R909),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems,while pure edge computing faces resource constraints that limit processing capabilities.This paper addresses these challenges by proposing a novel Deep Reinforcement Learning(DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments.Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency.The framework introduces three key innovations:(1)a DRL-based dynamic priority assignmentmechanism that learns fromsystem behavior,(2)a hybrid concurrency control protocol combining local edge validation with global cloud coordination,and(3)an integrated mathematical model that formalizes sensor-driven transactions across edge-cloud architectures.Extensive simulations across diverse workload scenarios demonstrate significant quantitative improvements:40%latency reduction,25%throughput increase,85%resource utilization(compared to 60%for heuristicmethods),40%reduction in energy consumption(300 vs.500 J per task),and 50%improvement in scalability factor(1.8 vs.1.2 for EDF)compared to state-of-the-art heuristic and meta-heuristic approaches.These results establish the framework as a robust solution for large-scale IoT and autonomous applications requiring real-time processing with consistency guarantees.
基金supported by the National Key R&D Program of China(No.2019YFA0708304)the CNPC Innovation Fund(No.2022DQ02-0609)the Scientific research and technology development Project of CNPC(No.2022DJ4507).
文摘Measurement-while-drilling(MWD)and guidance technologies have been extensively deployed in the exploitation of oil,natural gas,and other energy resources.Conventional control approaches are plagued by challenges,including limited anti-interference capabilities and the insufficient generalization of decision-making experience.To address the intricate problem of directional well trajectory control,an intelligent algorithm design framework grounded in the high-level interaction mechanism between geology and engineering is put forward.This framework aims to facilitate the rapid batch migration and update of drilling strategies.The proposed directional well trajectory control method comprehensively considers the multi-source heterogeneous attributes of drilling experience data,leverages the generative simulation of the geological drilling environment,and promptly constructs a directional well trajectory control model with self-adaptive capabilities to environmental variations.This construction is carried out based on three hierarchical levels:“offline pre-drilling learning,online during-drilling interaction,and post-drilling model transfer”.Simulation results indicate that the guidance model derived from this method demonstrates remarkable generalization performance and accuracy.It can significantly boost the adaptability of the control algorithm to diverse environments and enhance the penetration rate of the target reservoir during drilling operations.
基金supported by the National Natural Science Foundation of China(12426609,62203220,62373229)the Taishan Scholar Project Foundation of Shandong Province(tsqnz20230619,tsqn202408110)+2 种基金the Fundamental Research Foundation of the Central Universities(23Cx06024A)the Natural Science Foundation of Shandong Province(ZR2024QF096)the Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2023KJ061).
文摘This paper investigates a multiplayer Pareto game for affine nonlinear stochastic systems disturbed by both external and the internal multiplicative noises.The Pareto cooperative optimal strategies with the H_(∞) constraint are resolved by integrating H_(2)/H_(∞) theory with Pareto game theory.First,a nonlinear stochastic bounded real lemma(SBRL)is derived,explicitly accounting for non-zero initial conditions.Through the analysis of four cross-coupled Hamilton-Jacobi equations(HJEs),we establish necessary and sufficient conditions for the existence of Pareto optimal strategies with the H_(∞) constraint.Secondly,to address the complexity of solving these nonlinear partial differential HJEs,we propose a neural network(NN)framework with synchronous tuning rules for the actor,critic,and disturbance components,based on a reinforcement learning(RL)approach.The designed tuning rules ensure convergence of the actor-critic-disturbance components to the desired values,enabling the realization of robust Pareto control strategies.The convergence of the proposed algorithm is rigorously analyzed using a constructed Lyapunov function for the NN weight errors.Finally,a numerical simulation example is provided to demonstrate the effectiveness of the proposed methods and main results.
基金supported by National Natural Science Foundation of China(52375530,52075132)Natural Science Foundation of Heilongjiang Province(YQ2022E025)+4 种基金State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment(Guangdong University of Technology)(JMDZ202312)Fundamental Research Funds for the Central Universities(HIT.OCEF.2024034)China Postdoctoral Science Foundation(2019M651278,2020T130155)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z19066)Space Drive and Manipulation Mechanism Laboratory of BICE and National Key Laboratory of Space Intelligent Control,No BICE-SDMM-2024-01
文摘The increasingly stringent performance requirement in integrated circuit manufacturing, characterized by smaller feature sizes and higher productivity, necessitates the wafer stage executing a extreme motion with the accuracy in terms of nanometers. This demanding requirement witnesses a widespread application of iterative learning control(ILC), given the repetitive nature of wafer scanning. ILC enables substantial performance improvement by using past measurement data in combination with the system model knowledge. However, challenges arise in cases where the data is contaminated by the stochastic noise, or when the system model exhibits significant uncertainties, constraining the achievable performance. In response to this issue, an extended state observer(ESO) based adaptive ILC approach is proposed in the frequency domain.Despite being model-based, it utilizes only a rough system model and then compensates for the resulting model uncertainties using an ESO, thereby achieving high robustness against uncertainties with minimal modeling effort. Additionally, an adaptive learning law is developed to mitigate the limited performance in the presence of stochastic noise, yielding high convergence accuracy yet without compromising convergence speed. Simulation and experimental comparisons with existing model-based and data-driven inversion-based ILC validate the effectiveness as well as the superiority of the proposed method.
文摘Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry.
基金funded by Sponsorship of Science and Technology Project of State Grid Xinjiang Electric Power Co.,Ltd.,grant number SGXJ0000TKJS2400168.
文摘This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system.