期刊文献+
共找到876,766篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks
1
作者 Sk.A.Shezan 《Energy Engineering》 2026年第1期91-114,共24页
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia... Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments. 展开更多
关键词 Active power flow control interconnection flow controller(IFC) frequency response micro grid stability reactive power management
在线阅读 下载PDF
A Coordinated Multi-Loop Control Strategy for Fault Ride-Through in Grid-Forming Converters
2
作者 Zhuang Liu Mingwei Ren +1 位作者 Kai Shi Peifeng Xu 《Energy Engineering》 2026年第1期115-135,共21页
Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)... Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability. 展开更多
关键词 grid-forming converter multi-loop coordination negative-sequence control fault ride-through
在线阅读 下载PDF
Integrated Equipment with Functions of Current Flow Control and Fault Isolation for Multiterminal DC Grids 被引量:1
3
作者 Shuo Zhang Guibin Zou 《Energy Engineering》 EI 2025年第1期85-99,共15页
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ... The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract. 展开更多
关键词 Integrated equipment multiterminal direct current grid current flow control fault isolation
在线阅读 下载PDF
Digital Implementation of Grid-Forming Control for Power Converters Using Artificial Delays
4
作者 Jing Shi Jin Zhang +1 位作者 Chen Peng Minrui Fei 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2368-2370,共3页
Dear Editor,This letter investigates the grid-forming control for power converters.Recently,grid-forming control based on matching of synchronous machines was suggested by using continuous measurements.In the present ... Dear Editor,This letter investigates the grid-forming control for power converters.Recently,grid-forming control based on matching of synchronous machines was suggested by using continuous measurements.In the present letter,we suggest a digital implementation using artificial delays where the controller employs the discrete-time measurements only. 展开更多
关键词 grid forming control power convertersrecentlygrid forming artificial delays discrete time measurements matching synchronous machines power converters continuous measurementsin
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
5
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
Coordinated control strategy for multi-DG DC microgrid based on two-layer fuzzy neural network
6
作者 Hao Pan Limin Jia 《Global Energy Interconnection》 2025年第5期732-746,共15页
Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of cha... Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS. 展开更多
关键词 DC microgrid Distributed generation Droop control Fuzzy neural network Coordinated control
在线阅读 下载PDF
Hash-based FDI attack-resilient distributed self-triggered secondary frequency control for islanded microgrids
7
作者 Xing Huang Yulin Chen +4 位作者 Donglian Qi Yunfeng Yan Shaohua Yang Ying Weng Xianbo Wang 《Global Energy Interconnection》 2025年第1期1-12,共12页
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam... Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks. 展开更多
关键词 MICROgridS Distributed secondary control Self-triggered control Hash algorithms False data injection attack
在线阅读 下载PDF
Reactive voltage support strategy for droop-controlled grid-forming converters based on LADRC
8
作者 Dejian Yang Zhijie Cao Chaoquan Li 《iEnergy》 2025年第4期259-268,共10页
To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-int... To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified. 展开更多
关键词 grid-forming control linear active disturbance rejection control reactive power support low-voltage ride-through
在线阅读 下载PDF
Frequency-fixed grid-forming control for less-dynamic and safer renewable power systems
9
作者 Yong Min Zhenyu Lei +4 位作者 Lei Chen Fei Xu Boyuan Zhao Zongxiang Lu Ling Hao 《iEnergy》 2025年第4期219-234,共16页
Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy... Grid-forming(GFM)control is a key technology for ensuring the safe and stable operation of renewable power systems dominated by converter-interfaced generation(CIG),including wind power,photovoltaic,and battery energy storage.In this paper,we challenge the traditional approach of emulating a synchronous generator by proposing a frequency-fixed GFM control strategy.The CIG endeavors to regulate itself as a constant voltage source without control dynamics due to its capability limitation,denoted as the frequency-fixed zone.With the proposed strategy,the system frequency is almost always fixed at its rated value,achieving system active power balance independent of frequency,and intentional power flow adjustments are implemented through direct phase angle control.This approach significantly reduces the frequency dynamics and safety issues associated with frequency variations.Furthermore,synchronization dynamics are significantly diminished,and synchronization stability is enhanced.The proposed strategy has the potential to realize a renewable power system with a fixed frequency and robust stability. 展开更多
关键词 Converter interfaced generation grid-forming control frequency stability active power control synchronization stability renewable power system
在线阅读 下载PDF
Generalized shipboard microgrid power flow incorporating hierarchical control
10
作者 Stephen Mossing Oscar Amestegui +6 位作者 Michael Jonas Fei Feng Lizhi Wang Qing Shen Sina Zarrabian Ziqian Liu Peng Zhang 《iEnergy》 2025年第3期165-173,共9页
Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the tradition... Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the traditional power flow methods.This paper devises a generalized three-phase power flow approach for SMGs that integrate hierarchically controlled DERs.The main contributions include:(1)a droop-controlled three-phase Newton power flow algorithm that automatically incorporates the droop characteristics of DERs;(2)a secondary-controlled three-phase power flow method for power sharing and voltage regulation;and(3)modified Jacobian matrices to incorporate various hierarchical control modes.Numerical results demonstrate the effectiveness of the devised approach in both balanced and unbalanced three-phase hierarchically controlled SMG systems with arbitrary config-urations. 展开更多
关键词 Shipboard microgrid hierarchical control three-phase power flow
在线阅读 下载PDF
Synchronization Characterization of DC Microgrid Converter Output Voltage and Improved Adaptive Synchronization Control Methods
11
作者 Wei Chen Xin Gao +2 位作者 Zhanhong Wei Xusheng Yang Zhao Li 《Energy Engineering》 2025年第2期805-821,共17页
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta... This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance. 展开更多
关键词 DC microgrid BIFURCATION small-world network voltage synchronization improved adaptive control
在线阅读 下载PDF
Multivibrators Operated Anti⁃Islanding Protection Scheme with Frequency and Voltage Control for A Utility⁃Grid Integrated SPV / Battery Energy System
12
作者 Harvinder Singh Akhil Gupta Surbhi Gupta 《Journal of Harbin Institute of Technology(New Series)》 2025年第2期38-54,共17页
The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged fo... The utilization of hybrid energy systems has necessitated to address the various Power Quality(PQ)concerns in Distributed Generation(DG)networks.Owing to the emergence of DG networks in recent times,it is envisaged for every utility⁃grid⁃tied system to generate and utilize harmonic⁃less electric power.Therefore,the present research critically evaluates the operation of a utility⁃grid coordinated DG system and studies its islanding operation under faulted conditions.To achieve this,an Anti⁃Islanding Protection(AIP)scheme is developed which is capable of controlling the frequency and voltage variations.This scheme is operated by a coordinated operation of multivibrators.Their operation continuously traces the pre⁃defined limits of voltage,reactive,and real power,and matches with their reference values to avoid mismatch.It is revealed that,if the mismatched values of real and reactive power exceeded its threshold value of 0.1 p.u.,then the islanding condition is detected.Especially,the proposed system is assessed in two modes:utility⁃grid and islanding modes.In utility⁃grid mode,reactive power compensation is obtained by the control of voltage and frequency signals.However,in islanding mode,the real power requirement of the connected load is obtained with reduced harmonics under unsymmetrical faulted conditions.Incremental Conductance(IC)based Maximum Power Point Tracking(MPPT)technique ensures the extraction of maximum power under varying and stochastically atmospheric conditions.Simulation results reveal that the AIP scheme promptly disconnects the utility grid from the DG network in the minimum time during dynamic variations in frequency and voltage to prevent islanding.It is justified that there is violation of the considered threshold limits even under the faulted condition.The strategy of the switchgear scheme ensures the minimum detection time of the islanding operation.Total Harmonic Distortion(THD)is 0.26%for grid voltage.It validates according to the IEEE⁃1547 standard which stipulates that the THD of grid voltage must be less than 5%.Overall,satisfactory and accurate results are obtained,which are compared with the IEEE⁃1547 standard for validation. 展开更多
关键词 AIP control frequency power quality Soar Photovoltanic(SPV) voltage
在线阅读 下载PDF
Deep Synchronization Control of Grid-Forming Converters:A Reinforcement Learning Approach
13
作者 Zhuorui Wu Meng Zhang +2 位作者 Bo Fan Yang Shi Xiaohong Guan 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期273-275,共3页
Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters base... Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses. 展开更多
关键词 reduce frequency deviation enhance performance stable deep dynamics model improve active power responses deep reinforcement learning drl dynamics model deep synchronization control dsc deep synchronization control
在线阅读 下载PDF
Optimized control of grid-connected photovoltaic systems:Robust PI controller based on sparrow search algorithm for smart microgrid application
14
作者 Youssef Akarne Ahmed Essadki +2 位作者 Tamou Nasser Maha Annoukoubi Ssadik Charadi 《Global Energy Interconnection》 2025年第4期523-536,共14页
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi... The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems. 展开更多
关键词 Smart microgrid Photovoltaic system PI controller Sparrow search algorithm grid-CONNECTED Metaheuristic optimization
在线阅读 下载PDF
Fault-Tolerant Control of Current Measurement Circuits for Three-Phase Grid-Connected Inverters
15
作者 Fatma Ben Youssef Ahlem Ben Youssef +1 位作者 Mohamed Naoui Lassaad Sbita 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第4期308-317,共10页
Three-phase grid-connected inverters(GCIs)are essential components in distributed generation systems,where the accuracy of current measurement circuits is fundamental for reliable closed-loop operation.Nevertheless,th... Three-phase grid-connected inverters(GCIs)are essential components in distributed generation systems,where the accuracy of current measurement circuits is fundamental for reliable closed-loop operation.Nevertheless,the presence of a DC offset in the measured current can disrupt the regulation of grid currents and significantly degrade system performance.In this work,a fault-tolerant control approach is introduced to counteract the impact of such offset faults through a dedicated current compensation mechanism.The proposed solution is built around two main stages:(i)detecting and isolating DC offset faults that may appear in one or multiple phases of the measured grid currents,and(ii)estimating the fault magnitude and reconstructing the corrected current signal.The offset magnitude is obtained analytically by examining the grid current projected onto the synchronous d-axis at the grid angular frequency,eliminating the need for any additional sensing hardware.Simulation and experimental investigations conducted under several fault scenarios confirm the robustness of the proposed strategy and highlight significant improvements in detection speed and diagnostic accuracy. 展开更多
关键词 fault detection grid-connected inverter fault isolation fault-tolerant control sensing circuit
在线阅读 下载PDF
Centralized synthetic inertia control of inverter-based thermostatically controlled load clusters for grid frequency regulation
16
作者 Te Zhou Meng Zhou +4 位作者 Shuai Wang Zhi Li Yang Han Tomislav Capuder Ning Zhang 《iEnergy》 2025年第1期16-30,共15页
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve... As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink. 展开更多
关键词 Thermostatically controlled load demand response frequency response centralized frequency regulation inertia analog
在线阅读 下载PDF
The Emergency Control Method for Multi-Scenario Sub-Synchronous Oscillation in Wind Power Grid Integration Systems Based on Transfer Learning
17
作者 Qing Zhu Denghui Guo +3 位作者 Rui Ruan Zhidong Chai Chaoqun Wang Zhiwen Guan 《Energy Engineering》 2025年第8期3133-3154,共22页
This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditiona... This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system. 展开更多
关键词 Synchronous phasor data sub-synchronous oscillation emergency control deep reinforcement learning transfer learning
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
18
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
19
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
20
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部