Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati...This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.展开更多
In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unk...In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.展开更多
The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by ...The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.展开更多
In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the N...In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the Nussbaum function and backstepping technique,the problems resulting from the unknown signs of the nonlinear control functions are circumvented successfully.Moreover,a new adaptive asymptotic tracking control method is presented with the fault-tolerant control framework,which is capable of realising zero-tracking performance.The stability of the controlled system is ensured through fractional Lyapunov stability analysis.Finally,the validity of the raised scheme is verified by a simulation example.展开更多
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-ti...A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.展开更多
In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the...In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise.展开更多
We present a directional region control (DRC) model of thermal diffusion fractal growth with active heat diffusion in three-dimensional space. This model can be applied to predict the space body heat fractal growth ...We present a directional region control (DRC) model of thermal diffusion fractal growth with active heat diffusion in three-dimensional space. This model can be applied to predict the space body heat fractal growth and study its directional region control. When the nonlinear interference term and the inner heat source term are generalized functions, the relationship between the particle aggregation probability and the interference terms can be obtained using the norm theory. We can then predict the aggregation form of particles in different regions. When the nonlinear interference terms in the model are expressed as a trigonometric function and its composite function, our simulations show that the DRC method of thermal fractal diffusion is effective and has reference value for the directional control of actual fractal growth systems.展开更多
Based on the analysis of three-dimensional power conductor for DC arcfurnace, the electric arc deflection model was set up and the control system of the arc directionwas configured. According to the bus bar distributi...Based on the analysis of three-dimensional power conductor for DC arcfurnace, the electric arc deflection model was set up and the control system of the arc directionwas configured. According to the bus bar distribution at the bottom electrodes cooled by water, thearc direction control principle and its configuration were described. The simulation results showthat the control system can restrain the electric arc deflection and control the arc direction.展开更多
Recently, switched control systems have been attracting much attention m the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance d...Recently, switched control systems have been attracting much attention m the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance due to its wide ranges of applications in nature, engineering, and social sciences.展开更多
The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are add...The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.展开更多
As vip editors, it is our great honor to bring this special issue of the Journal of Control Theory and Applications devoted to Recent Advances and New Directions in Switched Control Systems.
Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning re...Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.展开更多
Under the background of the strategic goal of"double carbon,"the carbon reduction and consumption reduction of the iron and steel industry,especially in the ironmaking process,need to be further improved.The...Under the background of the strategic goal of"double carbon,"the carbon reduction and consumption reduction of the iron and steel industry,especially in the ironmaking process,need to be further improved.The raceway of tuyere provides the chemical environment,fuel and power source for blast furnace smelting.The research on the characteristics of its action mode and mechanism is of great significance to clarify the way of reducing carbon and consumption of blast furnace.In general,the formation mechanism,energy distribution,research progress,extended resource injection and directional regulation are studied and expounded.The research results of various scholars on the characteristics of the raceway show that the raceway is a complex process including multiphase turbulent flow,heat,momentum,mass and homogeneous and heterogeneous chemical reactions.With the development of multi-source fuel injection technology,the complexity of problem research is more obvious.Therefore,the collection of multi-factor,multi-directional and multi-process characteristic information in the raceway can provide guarantee for the stability,smooth operation,high yield,carbon reduction and consumption reduction of blast furnace and provide new ideas for the green and low-carbon development of iron and steel industry.展开更多
Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper ...Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.展开更多
The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To addre...The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.展开更多
Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic c...Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.展开更多
Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynam...Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.展开更多
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th...The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.展开更多
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training a...Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.展开更多
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金supported by National Natural Science Foundation of China (No. 60974139)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.
基金supported in part by the National Key Research and Development Program of China under grant(No.2022YFB4701400/4701401)by the National Natural Science Foundation of China under grant(No.61991400,No.61991403,No.62250710167,No.61860206008,No.61933012,No.62273064,No.62203078)+2 种基金in part by the National Key Research and Development Program of China under grant(No.2021ZD0201300)in part by the Innovation Support Program for International Students Returning to China under grant(No.cx2022016)in part by the Chongqing Medical Scientific Research Project under grant(No.2022DBXM001).
文摘In this paper,we consider the practical prescribed-time performance guaranteed tracking control problem for a class of uncertain strict-feedback systems subject to unknown control direction.Due to the existence of unknown nonlinearities and uncertainties,it is challenging to design a controller that can ensure the stability of closed-loop system within a predetermined finite time while maintaining the specified transient performance.The underlying problem becomes further complex as the control directions are unknown.To deal with the above problems,a special translation function as well as Nussbaum type function are introduced in the prescribed performance control(PPC)framework.Finally,a PPC as well as preset finite time tracking control scheme is designed,and its effectiveness is confirmed by both theoretical analysis and numerical simulation.
文摘The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.
基金the Funds ofNational Science of China(Grant Nos.61973146,61773188,62173172)the Distinguished Young Scientific Research Talents Plan in Liaoning Province(Nos.XLYC1907077,JQL201915402).
文摘In the article,the issues of asymptotic adaptive tracking control for the uncertain nonlinear systems in the presence of actuator faults and unknown control directions are investigated.By using the properties of the Nussbaum function and backstepping technique,the problems resulting from the unknown signs of the nonlinear control functions are circumvented successfully.Moreover,a new adaptive asymptotic tracking control method is presented with the fault-tolerant control framework,which is capable of realising zero-tracking performance.The stability of the controlled system is ensured through fractional Lyapunov stability analysis.Finally,the validity of the raised scheme is verified by a simulation example.
基金Projects(51205253,11272205)supported by the National Natural Science Foundation of ChinaProject(2012AA7052005)supported by the National High Technology Research and Development Program of China
文摘A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091, 10502042 and 10332030) and Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No Z200655).
文摘In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273088,61473173,and 61473174)
文摘We present a directional region control (DRC) model of thermal diffusion fractal growth with active heat diffusion in three-dimensional space. This model can be applied to predict the space body heat fractal growth and study its directional region control. When the nonlinear interference term and the inner heat source term are generalized functions, the relationship between the particle aggregation probability and the interference terms can be obtained using the norm theory. We can then predict the aggregation form of particles in different regions. When the nonlinear interference terms in the model are expressed as a trigonometric function and its composite function, our simulations show that the DRC method of thermal fractal diffusion is effective and has reference value for the directional control of actual fractal growth systems.
文摘Based on the analysis of three-dimensional power conductor for DC arcfurnace, the electric arc deflection model was set up and the control system of the arc directionwas configured. According to the bus bar distribution at the bottom electrodes cooled by water, thearc direction control principle and its configuration were described. The simulation results showthat the control system can restrain the electric arc deflection and control the arc direction.
文摘Recently, switched control systems have been attracting much attention m the control community because the problems are not only academically challenging for the inherent complexity, but also of practical importance due to its wide ranges of applications in nature, engineering, and social sciences.
基金supported by the National Natural Science Foundation of China(11302010)
文摘The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.
文摘As vip editors, it is our great honor to bring this special issue of the Journal of Control Theory and Applications devoted to Recent Advances and New Directions in Switched Control Systems.
基金supported by the Chongqing New Youth Innovation Talent Program(No.CSTB2024NSCQ-QCXMX0086)Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202300606)+1 种基金National High-end Foreign Experts Introduction Plan(No.G2022035005L)Chongqing Talent Plan of Overall Rationing System Project(No.CQYC202203091156).
文摘Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.
基金financially supported by the Major Science and Technology-Special Plan“Unveiling and Leading”Project of Shanxi Province(No.202201050201011)National Natural Science Foundation of China(No.52274316)+4 种基金China Baowu Low-Carbon Metallurgy Innovation Foundation(No.BWLCF202116)National Key R&D Program of China(No.2022YFE0208100)Major Science and Technology Project of Xinjiang(No.2022A01003)Major Science and Technology Projects of Anhui Province(No.202210700037)Special Funding for Science and Technology of China Minmetals Corporation(No.2021ZXD01).
文摘Under the background of the strategic goal of"double carbon,"the carbon reduction and consumption reduction of the iron and steel industry,especially in the ironmaking process,need to be further improved.The raceway of tuyere provides the chemical environment,fuel and power source for blast furnace smelting.The research on the characteristics of its action mode and mechanism is of great significance to clarify the way of reducing carbon and consumption of blast furnace.In general,the formation mechanism,energy distribution,research progress,extended resource injection and directional regulation are studied and expounded.The research results of various scholars on the characteristics of the raceway show that the raceway is a complex process including multiphase turbulent flow,heat,momentum,mass and homogeneous and heterogeneous chemical reactions.With the development of multi-source fuel injection technology,the complexity of problem research is more obvious.Therefore,the collection of multi-factor,multi-directional and multi-process characteristic information in the raceway can provide guarantee for the stability,smooth operation,high yield,carbon reduction and consumption reduction of blast furnace and provide new ideas for the green and low-carbon development of iron and steel industry.
基金supported by the key technology project of China Southern Power Grid Corporation(GZKJXM20220041)partly by theNational Key Research and Development Plan(2022YFE0205300).
文摘Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.
基金supported by National Natural Science Foundation of China(No.52302472)。
文摘The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.
基金supported by the National Natural Science Foundation of China(No.52372371)the Science Center for Gas Turbine Project,China(Nos.P2022-B-V-002-001,P2022-B-V-001-001).
文摘Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.
基金Supported by National Natural Science Foundation of China(Grant Nos.52402497,52025121 and 52002066)Young Scientists Project and General Project of Applied Basic Research in Yunnan Province(Grant Nos.202501AT070296,202401AU070196)+1 种基金The Key Laboratory of Modern Agricultural Engineering of Ordinary Colleges and Universities of Education Department of Autonomous Region(Grant No.TDNG2023108)Jiangsu Provincial Achievements Transformation Project(Grant No.BA2018023).
文摘Distributed drive electric vehicles(DDEVs)endow the ability to improve vehicle stability performance through direct yaw-moment control(DYC).However,the nonlinear characteristics pose a great challenge to vehicle dynamics control.For this purpose,this paper studies the DYC through the Takagi-Sugeno(T-S)fuzzy-based model predictive control to deal with the nonlinear challenge.First,a T-S fuzzy-based vehicle dynamics model is established to describe the time-varying tire cornering stiffness and vehicle speeds,and thus the uncertain parameters can be represented by the norm-bounded uncertainties.Then,a robust model predictive control(MPC)is developed to guarantee vehicle handling stability.A feasible solution can be obtained through a set of linear matrix inequalities(LMIs).Finally,the tests are conducted by the Carsim/Simulink joint platform to verify the proposed method.The comparative results show that the proposed strategy can effectively guarantee the vehicle’s lateral stability while handling the nonlinear challenge.
基金Project (No. 2006C11148) supported by the ScienceTechnology Project of Zhejiang Province, China
文摘The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
基金the National Natural Science Foundation of China (60374032).
文摘Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.