期刊文献+
共找到6,342篇文章
< 1 2 250 >
每页显示 20 50 100
Integrated Cam Contour Optimization Method Considering Kinematic and Dynamic Characteristics: A Paradigm of Offset Press Open-Close Gripper Mechanism
1
作者 LI Wenwei CAO Shuai +2 位作者 QIAN Qian ZHANG Yaling CHEN Nan 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1195-1207,共13页
To efficiently search out the optimal cam contour,a software integrated optimization method considering cam mechanism’s kinematic and dynamic characteristics was presented,and its effectiveness was demonstrated by a ... To efficiently search out the optimal cam contour,a software integrated optimization method considering cam mechanism’s kinematic and dynamic characteristics was presented,and its effectiveness was demonstrated by a case study of the cam contour optimization for an offset press open-close gripper mechanism.The acceleration curve and the residual vibration model of the follower were separately studied.A symmetric harmonic trapezoidal curve was designed to control the follower’s acceleration,and single-DOF lumped parameter torsional vibration model was proposed to describe the follower’s residual vibration.Accordingly,corresponding motion curve design software and Simulink vibration model of the follower were developed respectively,and they were integrated into an automatic optimization platform with iSIGHT.The multi-objective optimization with objectives of minimizing both the acceleration and the residual vibration of the follower was completed within the platform by using NSGA-II algorithm.An appropriate point with lower acceleration and residual vibration was chosen from Pareto front as an optimal solution of the follower’s motion curve.Based on the follower’s new motion curve,the actual cam contour was generated by inverse kinematic simulation in COSMOSMotion.The offset press that installed our new designed cam exhibited a lower vibration than the previous machine,and the maximum measured acceleration of the offset press at a printing speed of 15000 r/h is reduced by 7.7%. 展开更多
关键词 offset press cam contour optimization acceleration curve residual vibration kinematics dynamics integrated platform
原文传递
Research on an Air Pollutant Data Correction Method Based on Bayesian Optimization Support Vector Machine
2
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第4期190-203,共14页
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by... Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data. 展开更多
关键词 Air quality monitoring Data calibration Support vector regression Bayesian optimization Machine learning
在线阅读 下载PDF
Optimization of endwall contouring in axial compressor S-shaped ducts 被引量:11
3
作者 Jin Donghai Liu Xiwu +1 位作者 Zhao Weiguang Gui Xingmin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1076-1086,共11页
This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The pla... This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%. 展开更多
关键词 Adaptive genetic algorithm(AGA) Artificial neural network(ANN) Corner separation Design of experiments(DOE) Endwall contouring optimization Response surfacemethodology (RSM) S-shaped duct
原文传递
OPTIMIZATION METHOD ON IMPELLER MERIDIONAL CONTOUR AND 3D BLADE 被引量:3
4
作者 LU Jinling XI Guang QI Datong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期43-49,共7页
An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized... An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized using the angular momentum and calculated by inverse design method. The design variables are separated into two categories: the meridional contour design vari- ables and the blade design variables. Firstly, only the blade is optimized using genetic algorithm with the meridional contour remained constant. The artificial neural network (ANN) techniques with the training sample data schemed according to design of experiment theory are adopted to construct the response relation between the blade design variables and the impeller performance. Then, based on the ANN approximated relation between the meridional contour design variables and impeller per- formance, the meridional contour is optimized. Fewer design variables and less calculation effort is required in this method that may be widely used in the optimization of three-dimension impellers. An optimized impeller in a mixed-flow pump, where the head and the efficiency are enhanced by 12.9% and 4.5% respectively, confirms the validity of this newly proposed method. 展开更多
关键词 optimization BLADE Meridional contour Artificial neural network(ANN)
在线阅读 下载PDF
An Optimization Approach of Rotor Contour for Variable Reluctance Resolver 被引量:1
5
作者 LongFei XIAO Chao BI 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第3期257-261,共5页
An effective approach for optimizing the rotor contour for variable reluctance(VR)resolver is presented.Using this approach,the procedure for optimizing the rotor is divided into two parts:the establishment of initial... An effective approach for optimizing the rotor contour for variable reluctance(VR)resolver is presented.Using this approach,the procedure for optimizing the rotor is divided into two parts:the establishment of initial shape curve,and then computation for the optimization.In order to simplify the process of the former,a shape function is constructed.And the latter is carried out by Taguchi optimization method and finite element method(FEM).An example of a 3-10 VR resolver is used to present the procedure of the optimization,and the testing results confirmed the effectivity of the approach. 展开更多
关键词 VR resolver Rotor contour optimization Fourier series Taguchi FEM
在线阅读 下载PDF
Gradient-based optimization method for producing a contoured beam with single-fed reflector antenna
6
作者 LIAN Peiyuan WANG Congsi +2 位作者 XIANG Binbin SHI Yu XUE Song 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期22-29,共8页
A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopt... A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 REFLECTOR ANTENNAS SINGLE FEED contoured BEAM gradient-based optimization method.
在线阅读 下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
7
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
8
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
原文传递
A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation
9
作者 Fangzhen Ge Yating Wu +1 位作者 Debao Chen Longfeng Shen 《Intelligent Automation & Soft Computing》 2024年第2期189-211,共23页
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence... It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive. 展开更多
关键词 Many-objective optimization evolutionary algorithm Pareto dominance reference vector adaptive niche
在线阅读 下载PDF
Chaotic Elephant Herd Optimization with Machine Learning for Arabic Hate Speech Detection
10
作者 Badriyya B.Al-onazi Jaber S.Alzahrani +5 位作者 Najm Alotaibi Hussain Alshahrani Mohamed Ahmed Elfaki Radwa Marzouk Heba Mohsen Abdelwahed Motwakel 《Intelligent Automation & Soft Computing》 2024年第3期567-583,共17页
In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that op... In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales.This is attributed to business owners’understanding of social media’s importance for business development.However,the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns.Hate speech over online social networking sites turns out to be a worldwide issue that reduces the cohesion of civil societies.In this background,the current study develops a Chaotic Elephant Herd Optimization with Machine Learning for Hate Speech Detection(CEHOML-HSD)model in the context of the Arabic language.The presented CEHOML-HSD model majorly concentrates on identifying and categorising the Arabic text into hate speech and normal.To attain this,the CEHOML-HSD model follows different sub-processes as discussed herewith.At the initial stage,the CEHOML-HSD model undergoes data pre-processing with the help of the TF-IDF vectorizer.Secondly,the Support Vector Machine(SVM)model is utilized to detect and classify the hate speech texts made in the Arabic language.Lastly,the CEHO approach is employed for fine-tuning the parameters involved in SVM.This CEHO approach is developed by combining the chaotic functions with the classical EHO algorithm.The design of the CEHO algorithm for parameter tuning shows the novelty of the work.A widespread experimental analysis was executed to validate the enhanced performance of the proposed CEHOML-HSD approach.The comparative study outcomes established the supremacy of the proposed CEHOML-HSD model over other approaches. 展开更多
关键词 Arabic language machine learning elephant herd optimization TF-IDF vectorizer hate speech detection
在线阅读 下载PDF
融合XGBoost和SVR的滑坡位移预测 被引量:2
11
作者 王惠琴 梁啸 +4 位作者 何永强 李晓娟 张建良 郭瑞丽 刘宾灿 《湖南大学学报(自然科学版)》 北大核心 2025年第4期149-158,共10页
利用极端梯度提升与支持向量回归,同时结合猎人猎物优化算法的优势,提出了一种融合极端梯度提升和支持向量回归的滑坡位移预测模型.首先采用极端梯度提升(extreme gradient boosting,XGBoost)进行滑坡位移初步预测,进一步利用猎人猎物... 利用极端梯度提升与支持向量回归,同时结合猎人猎物优化算法的优势,提出了一种融合极端梯度提升和支持向量回归的滑坡位移预测模型.首先采用极端梯度提升(extreme gradient boosting,XGBoost)进行滑坡位移初步预测,进一步利用猎人猎物优化算法(hunter-prey optimizer,HPO)优化支持向量回归(support vector regression,SVR)的超参数而构建了一种组合预测模型(HPO-SVR)以修正XGBoost的预测结果.两组滑坡位移实测数据表明:HPO算法通过不断更新猎人与猎物位置的动态寻优策略,获得了更加合理的SVR的超参数.相对于XGBoost、SVR,以及其与粒子群优化算法、遗传算法和HPO的组合预测模型而言,XGBoost-HPO-SVR组合模型在阳屲山滑坡和脱甲山滑坡位移预测中取得了良好的效果,其均方根误差和平均绝对误差分别为3.505和1.357,0.550和0.538. 展开更多
关键词 极端梯度提升 支持向量回归 猎人猎物优化算法 滑坡位移预测
在线阅读 下载PDF
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测 被引量:1
12
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘法支持向量机 金豺算法
在线阅读 下载PDF
基于BOA-SVR算法的弹射起飞安全性预测方法研究 被引量:1
13
作者 田煜 刘苗鑫 刘涛 《飞行力学》 北大核心 2025年第4期83-88,共6页
为保证舰载机弹射起飞的顺利实施,需要对弹射起飞进行安全性评估和预测。以大数据和机器学习评估技术入手,研究了基于蝴蝶优化算法的支持向量回归(BOA-SVR)弹射起飞安全性评估方法。首先梳理弹射起飞安全性影响因素和指标参数,明确评估... 为保证舰载机弹射起飞的顺利实施,需要对弹射起飞进行安全性评估和预测。以大数据和机器学习评估技术入手,研究了基于蝴蝶优化算法的支持向量回归(BOA-SVR)弹射起飞安全性评估方法。首先梳理弹射起飞安全性影响因素和指标参数,明确评估算法的输入和输出;其次研究BOA-SVR算法的实现,并利用仿真数据进行算法的回归分析和性能比较,结果表明所提出的算法比传统SVR算法具有更高的性能;最后使用弹射起飞安全性评估回归模型实现弹射起飞的安全性预测,并用于工况调整,对飞行试验和部队训练具有很好的实用性。 展开更多
关键词 弹射起飞 安全性预测 蝴蝶优化算法 支持向量回归
原文传递
融合改进卷积神经网络和层次SVM的鸡蛋外观检测 被引量:1
14
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
基于近红外光谱的草莓多品质参数通用预测模型研究 被引量:1
15
作者 李博 朱莉 +1 位作者 姚庆宇 姜洪洋 《现代食品科技》 北大核心 2025年第8期227-236,共10页
可溶性固形物(Soluble Solids Content,SSC)和硬度(Firmness,FI)是影响草莓口感的关键因素。该研究建立了一种基于共同特征的草莓品质参数(SSC、FI)通用预测模型。采用竞争性自适应重加权算法(Competitive Adaptive Reweighted Sampling... 可溶性固形物(Soluble Solids Content,SSC)和硬度(Firmness,FI)是影响草莓口感的关键因素。该研究建立了一种基于共同特征的草莓品质参数(SSC、FI)通用预测模型。采用竞争性自适应重加权算法(Competitive Adaptive Reweighted Sampling,CARS)、连续投影法(Successive Projection Algorithm,SPA)和无信息变量消除法(Uniformative Variable Elimination,UVE)提取光谱特征,建立了偏最小二乘(Partial Least Squares Regression,PLSR)、极限学习机(Extreme Learning Machine,ELM)和最小二乘支持向量机(Least Square Support Vector Machines,LS-SVM)决策模型,并使用鲸鱼优化算法寻优LS-SVM模型的最佳参数。建立了基于SSC和FI共同特征的通用预测模型。结果表明,使用SG卷积平滑法(Savizky-Golay,SG)进行预处理可有效减少光谱的噪声。CARS-LS-SVM模型对SSC和FI的单指标预测效果最好,预测集相关系数分别为0.937和0.898,残差预测偏差分别为2.87和2.28;采用UVE方法分别提取的SSC和FI特征有着最高重合率。基于共同特征建立的LS-SVM双指标模型可以对SSC和FI进行有效预测,预测集相关系数分别为0.922和0.871,残差预测偏差为2.58和2.04。利用近红外光谱技术可以同时预测草莓的SSC和FI,该研究为草莓的多参数通用预测模型提供了理论参考。 展开更多
关键词 草莓 近红外光谱 鲸鱼优化算法 最小二乘支持向量机 通用预测模型
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测 被引量:1
16
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量机回归(SVR) 精英反向学习
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:2
17
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测 被引量:2
18
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
一种改进的Douglas-Peucker数控加工轨迹压缩方法
19
作者 王品 王婧如 +2 位作者 张丽鹏 王森 荆东东 《小型微型计算机系统》 北大核心 2025年第1期64-71,共8页
数控加工程序通常由计算机辅助制造系统生成,以微小直线段的形式“以直代曲”来指导数控机床进行直线插补运动.随着工艺复杂度和精度要求的提高,数控加工程序的数据量急剧增加,不仅增加了数据存储和传输的难度,而且会引起机床执行过程... 数控加工程序通常由计算机辅助制造系统生成,以微小直线段的形式“以直代曲”来指导数控机床进行直线插补运动.随着工艺复杂度和精度要求的提高,数控加工程序的数据量急剧增加,不仅增加了数据存储和传输的难度,而且会引起机床执行过程中速度的频繁调整.针对以上问题,提出了一种融合深度学习的改进Douglas-Peucker三维数控加工轨迹压缩方法,该方法通过引入曲率和距离容差度的超参数考虑了加工轨迹中数据点序列的几何特性,并通过深度神经网络模型动态地优化算法中的超参数,从而实现更高的压缩效率.此外,算法中利用了KD树结构优化误差计算,确保压缩后的数据能够在给定的公差范围内精确呈现原始数据的特性.实验表明,该算法可大幅减少数据量,并确保压缩后的数据准确呈现原始数据的特性. 展开更多
关键词 DOUGLAS-PEUCKER算法 轨迹压缩 轮廓误差 深度神经网络 参数优化
在线阅读 下载PDF
基于平均矢量角和动态缩减机制的约束多目标进化算法
20
作者 鲁宇明 曹龙昊 +1 位作者 董显娟 熊丽娟 《控制与决策》 北大核心 2025年第8期2473-2480,共8页
针对约束多目标进化算法存在难以平衡种群收敛性与多样性的问题,提出一种基于平均矢量角和动态缩减机制的约束多目标进化算法(CMOEA-BAD).该算法设计主种群和辅助种群,它们分别独立进化,以求解原始问题和辅助问题.对于主种群,CMOEA-BAD... 针对约束多目标进化算法存在难以平衡种群收敛性与多样性的问题,提出一种基于平均矢量角和动态缩减机制的约束多目标进化算法(CMOEA-BAD).该算法设计主种群和辅助种群,它们分别独立进化,以求解原始问题和辅助问题.对于主种群,CMOEA-BAD将理想点与最低点的角度信息相结合构成平均矢量角,并将该角度融入约束支配原则进行个体选择,以平衡种群的多样性与收敛性.对于辅助种群,设计一种种群规模动态缩减机制,通过动态地调整辅助种群的规模来降低其在进化过程中所占用的计算资源,以加快算法的收敛速度.为验证所提出算法的性能,将所提出算法在MW和DTLZ测试问题上与PPS、BiCo、NSBiDiCo、MFOSPEA2以及CMOES算法进行比较分析,并应用于实际工程问题中.实验结果表明,所提出算法不仅能够有效平衡种群的收敛性与多样性,还可以显著提高算法的收敛速度.算法整体运行时间缩短了28%,综合性能更优. 展开更多
关键词 多目标优化 约束 矢量角度 动态缩减机制 收敛性 多样性
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部