The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map o...The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.展开更多
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-...This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.展开更多
The fish cage design requires accurate predictions of long-term extreme loads and responses.Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-ter...The fish cage design requires accurate predictions of long-term extreme loads and responses.Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-term extremes,the environmental contour method gains much attention in predicting the long-term extreme values due to the less computational effort.This paper investigates the long-term extreme response of a fish cage using the environmental contour method.The fish cage is numerically simulated based on the lumped-mass method and the curved beam theory.Based on the one-dimensional(1D)and two-dimensional(2D)environmental contour,the extreme responses,including the surge and heave motions,mooring force,and vertical bending of the floater,are predicted for different return periods and compared with the full long-term analysis results.Results indicate that the 1D method greatly underestimates the extreme values.The 2D environmental contour method with a higher percentile level,namely90%,provides reasonable estimations and seems to be suitable for the long-term value analysis.Sensitivity studies show that the mooring arrangement and the bending stiffness have great effects on the bending moment and the mooring force and the mooring line pre-tension has minor effects on the fish cage response.展开更多
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva...In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.展开更多
This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by usin...This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.展开更多
The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the e...The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the edge of a circular hole under an unidirectional uniform tension and two equal-length,unequal-length hole-edge cracks,respectively,at a rectangular plate,an inclined centered crack under uniaxial tension at a square plate and a pipeline crack model,are used to demonstrate the accuracy and effectiveness of the approaches.SIFs are presented for the effects of various crack lengths and length-width ratio.Numerical results are analyzed and compared with reference solutions and results obtained by the Voronoi cell finite element method,boundary element method,high-order extended finite element method(high-order XFEM)and commercial finite element software ABAQUS in the available literature.Numerical results are in good agreement with the benchmark problems and show faster convergence rate,higher accuracy and better numerical stability.展开更多
A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopt...A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm.展开更多
Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on...Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on a strategy to estimate design loads for offshore jacket structures based on an environmental contour approach. In addition to the popular conditional distribution model, various classes of bivariate copulas are adopted to construct joint distributions of environmental variables. Analytical formulations of environmental contours based on various models are presented and discussed in this study. The design loads are examined by dynamic response analysis of jacket platform. Results suggest that the conditional model is not recommended for use in estimating design loads in sampling locations due to poor fitting results. Independent copula produces conservative design loads and the extreme response obtained using the conditional model are smaller than those determined by copulas. The suitability of a model for contour construction varies with the origin of wave data. This study provides a reference for the design load estimation of jacket structures and offers an alternative procedure to determine the design criteria for offshore structures.展开更多
基金Project(35061107)supported by the Doctoral Initiation Project of Jiangsu University of Science and Technology,China
文摘The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.
基金supported by the National Natural Science Foundation of China (No.50935008)
文摘This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2019M661024]the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering(Grant No.LP1901)。
文摘The fish cage design requires accurate predictions of long-term extreme loads and responses.Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-term extremes,the environmental contour method gains much attention in predicting the long-term extreme values due to the less computational effort.This paper investigates the long-term extreme response of a fish cage using the environmental contour method.The fish cage is numerically simulated based on the lumped-mass method and the curved beam theory.Based on the one-dimensional(1D)and two-dimensional(2D)environmental contour,the extreme responses,including the surge and heave motions,mooring force,and vertical bending of the floater,are predicted for different return periods and compared with the full long-term analysis results.Results indicate that the 1D method greatly underestimates the extreme values.The 2D environmental contour method with a higher percentile level,namely90%,provides reasonable estimations and seems to be suitable for the long-term value analysis.Sensitivity studies show that the mooring arrangement and the bending stiffness have great effects on the bending moment and the mooring force and the mooring line pre-tension has minor effects on the fish cage response.
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/174/46.
文摘In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.
基金Supported by the National Natural Science Foundation of China(11561055)the Natural Science Foundation of Ningxia(2018AAC03057)。
文摘This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions.
基金the firancinal support of the National Natural Science Foundation of China(Grant No:51769011)for this work,and the authors are also deeply grateful to the editors and revewerse for tbeir rigorous work and valuable comments.
文摘The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the edge of a circular hole under an unidirectional uniform tension and two equal-length,unequal-length hole-edge cracks,respectively,at a rectangular plate,an inclined centered crack under uniaxial tension at a square plate and a pipeline crack model,are used to demonstrate the accuracy and effectiveness of the approaches.SIFs are presented for the effects of various crack lengths and length-width ratio.Numerical results are analyzed and compared with reference solutions and results obtained by the Voronoi cell finite element method,boundary element method,high-order extended finite element method(high-order XFEM)and commercial finite element software ABAQUS in the available literature.Numerical results are in good agreement with the benchmark problems and show faster convergence rate,higher accuracy and better numerical stability.
基金supported by the National Natural Science Foundation of China(51805399)the Fundamental Research Funds for the Central Universities(JB180403)+2 种基金the Chinese Academy of Sciences(CAS)"Light of West China" Program(2017-XBQNXZ-B-024)the National Basic Research Program of China(973 Program)(2015CB857100)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the CAS
文摘A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm.
基金supported by the National Key Research and Development Program (No. 2016YFC0303401)the National Natural Science Foundation of China (No. 51779236)the National Natural Science Foundation of China–Shandong Joint Fund Project (No. U1706226)。
文摘Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on a strategy to estimate design loads for offshore jacket structures based on an environmental contour approach. In addition to the popular conditional distribution model, various classes of bivariate copulas are adopted to construct joint distributions of environmental variables. Analytical formulations of environmental contours based on various models are presented and discussed in this study. The design loads are examined by dynamic response analysis of jacket platform. Results suggest that the conditional model is not recommended for use in estimating design loads in sampling locations due to poor fitting results. Independent copula produces conservative design loads and the extreme response obtained using the conditional model are smaller than those determined by copulas. The suitability of a model for contour construction varies with the origin of wave data. This study provides a reference for the design load estimation of jacket structures and offers an alternative procedure to determine the design criteria for offshore structures.