期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of a Laplace Spectral Method for Time-Fractional Advection-Diffusion Equations Incorporating the Atangana-Baleanu Derivative
1
作者 Kamran Farman Ali Shah +3 位作者 Kallekh Afef J.F.Gómez-Aguilar Salma Aljawi Ioan-Lucian Popa 《Computer Modeling in Engineering & Sciences》 2025年第6期3433-3462,共30页
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva... In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate. 展开更多
关键词 Laplace transform spectral method existence theory fractional derivative with non-singular kernel contour integration methods
在线阅读 下载PDF
A Contour Integral Method for Linear Differential Equations in Complex Plane
2
作者 GAO Le WANG Wenshuai 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第6期489-495,共7页
This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by usin... This paper presents the contour integral method for solving the linear constant coefficient ordinary differential equations in complex plane,and obtains the uniform expressions of the general solutions.Firstly,by using Residue Theorem,the general form of the contour integral representation for the homogeneous complex differential equation is obtained,which can be degenerated to classical results in real line.As for inhomogeneous complex differential equations with constant coefficients,we construct the integral expression of the particular solution for any continuous forcing term,and give rigorous proof via Residue Theorem.Thus the general solutions of inhomogeneous complex differential equations are also given.The main purpose of this paper is to give a foundation for a complete theory of linear complex differential equations with constant coefficients by a contour integral method.The results can not only solve the inhomogeneous complex differential equation well,but also explain the forms that are difficult to be understood in the classical solutions. 展开更多
关键词 complex differential equation contour integral method Residue Theorem general solution particular solution
原文传递
Extraction of Stress Intensity Factors by Using the P-Version Finite Element Method and Contour Integral Method
3
作者 Jianming Zhang Jun Chen Liang Wu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第6期836-850,共15页
The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the e... The stress intensity factors(SIFs)for two-dimensional cracks are extracted using the p-version finite element method(P-FEM)and the contour integral method.Several numerical experiments,e.g.,crack initiating from the edge of a circular hole under an unidirectional uniform tension and two equal-length,unequal-length hole-edge cracks,respectively,at a rectangular plate,an inclined centered crack under uniaxial tension at a square plate and a pipeline crack model,are used to demonstrate the accuracy and effectiveness of the approaches.SIFs are presented for the effects of various crack lengths and length-width ratio.Numerical results are analyzed and compared with reference solutions and results obtained by the Voronoi cell finite element method,boundary element method,high-order extended finite element method(high-order XFEM)and commercial finite element software ABAQUS in the available literature.Numerical results are in good agreement with the benchmark problems and show faster convergence rate,higher accuracy and better numerical stability. 展开更多
关键词 Fracture mechanics Stress intensity factors P-version finite element method contour integral method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部