Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military st...Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military strike. Contours of man-made objects usually consist of straight lines, corner points, and simple curves. Motivated by this observation, a man-made object detection method is proposed based on complexity evaluation of object contours. After salient contours which keep the crucial information of objects are accurately extracted using an improved mean-shift clustering algorithm, a novel approach is presented to evaluate the complexity of contours. By comparing the entropy values of contours before/after sampling and linear interpolation, it is easy to distinguish between man-made objects and natural ones according to the complexity of their contours.Experimental results show that the presented method can effectively detect man-made objects when compared to the existing ones.展开更多
Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize th...Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.展开更多
基金co-supported by the National Natural Science Foundation of China (61473148)the Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX16_0337)
文摘Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military strike. Contours of man-made objects usually consist of straight lines, corner points, and simple curves. Motivated by this observation, a man-made object detection method is proposed based on complexity evaluation of object contours. After salient contours which keep the crucial information of objects are accurately extracted using an improved mean-shift clustering algorithm, a novel approach is presented to evaluate the complexity of contours. By comparing the entropy values of contours before/after sampling and linear interpolation, it is easy to distinguish between man-made objects and natural ones according to the complexity of their contours.Experimental results show that the presented method can effectively detect man-made objects when compared to the existing ones.
基金This work was supported by National Natural Science Foundation of China (No.60372066)
文摘Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.