This paper deals with numerical computation and analysis for the initial boundary problems of two dimensional(2D)Sobolev equations with piecewise continuous argument.Firstly,a two-level high-order compact difference m...This paper deals with numerical computation and analysis for the initial boundary problems of two dimensional(2D)Sobolev equations with piecewise continuous argument.Firstly,a two-level high-order compact difference method(HOCDM)with computational accuracy O(τ^(2)+h_(x)^(4)+h_(y)^(4))is suggested,whereτ,h_(x),h_(y) denote the temporal and spatial stepsizes of the method,respectively.In order to improve the temporal computational accuracy of this method,the Richardson extrapolation technique is used and thus a new two-level HOCDMis derived,which is proved to be convergent of order four both in time and space.Although the new two-level HOCDM has the higher computational accuracy in time than the previous one,it will bring a larger computational cost.To overcome this deficiency,a three-level HOCDM with computational accuracy O(τ^(4)+h_(x)^(4)+h_(y)^(4))is constructed.Finally,with a series of numerical experiments,the theoretical accuracy and computational efficiency of the above methods are further verified.展开更多
The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inn...The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inner product,the multi-dimensional oscillation problems are changed into the problems of which one-dimensional functional differential inequalities have not eventually positive solution.Some new sufficient conditions for the H-oscillation of all solutions of the equations are obtained under Dirichlet boundary condition,where H is a unit vector of RM.展开更多
This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a ...This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a class of compensated split-step balanced(CSSB)methods are suggested for solving the equations.Based on the one-sided Lipschitz condition and local Lipschitz condition,a strong convergence criterion of CSSB methods is derived.It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions.Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods.Moreover,in order to show the computational advantage of CSSB methods,we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.展开更多
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef...In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.展开更多
A class of hyperbolic equations with continuous distributed deviating arguments is considered and its oscillation theorems are discussed.These theorems are of higher degree of generality and deal with the cases which ...A class of hyperbolic equations with continuous distributed deviating arguments is considered and its oscillation theorems are discussed.These theorems are of higher degree of generality and deal with the cases which are not covered by the known criteria.Particularly,these criteria extend and unify a number of existing results.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
We prove the existence of global solutions to the initial-boundary-value problem on the half space R+ for a one-dimensional viscous ideal polytropic gas. Some suitable assumptions are made to guarantee the existence ...We prove the existence of global solutions to the initial-boundary-value problem on the half space R+ for a one-dimensional viscous ideal polytropic gas. Some suitable assumptions are made to guarantee the existence of smooth solutions. Employing the L2- energy estimate, we prove that the impermeable problem has a unique global solutionis.展开更多
In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibr...In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibrium.展开更多
Sufficient conditions are established for the oscillations of systems of parabolic equations with continuous distributed deviating arguments of the form where Ω is a bounded domain in Rn with piecewise smooth bounda...Sufficient conditions are established for the oscillations of systems of parabolic equations with continuous distributed deviating arguments of the form where Ω is a bounded domain in Rn with piecewise smooth boundary эΩ, △is the Laplacian in Euclidean n-space Rn, and the integral in (1) is a Stieltjes integral.展开更多
Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asympt...Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asymptotically) stable.1991 Mathematics Subject Classification: 39A12.展开更多
By introducing two integral operators and using the integral averaging technique, some new oscillation criteria are obtained for a class of high order neutral differential equation with continuous deviating arguments....By introducing two integral operators and using the integral averaging technique, some new oscillation criteria are obtained for a class of high order neutral differential equation with continuous deviating arguments. These results are different from most known ones in the sense that they depend on the information only on a sequence of subintervals of [t0,∞), rather than on the whole half-line.展开更多
The necessary and sufficient conditions for the oscillations of every solution of the nonlinear delay equation (t)+f(x(t-l))+g(x( t-k ))=0 are oblained.
The paper de ls with oscillation of Runge-Kutta methods for equation x'(t) = ax(t) + aox([t]). The conditions of oscillation for the numerical methods are presented by considering the characteristic equation o...The paper de ls with oscillation of Runge-Kutta methods for equation x'(t) = ax(t) + aox([t]). The conditions of oscillation for the numerical methods are presented by considering the characteristic equation of the corresponding discrete scheme. It is proved that any nodes have the same oscillatory property as the integer nodes. Furthermore, the conditions under which the oscillation of the analytic solution is inherited by the numerical solution are obtained. The relationships between stability and oscillation are considered. Finally, some numerical experiments are given.展开更多
文摘This paper deals with numerical computation and analysis for the initial boundary problems of two dimensional(2D)Sobolev equations with piecewise continuous argument.Firstly,a two-level high-order compact difference method(HOCDM)with computational accuracy O(τ^(2)+h_(x)^(4)+h_(y)^(4))is suggested,whereτ,h_(x),h_(y) denote the temporal and spatial stepsizes of the method,respectively.In order to improve the temporal computational accuracy of this method,the Richardson extrapolation technique is used and thus a new two-level HOCDMis derived,which is proved to be convergent of order four both in time and space.Although the new two-level HOCDM has the higher computational accuracy in time than the previous one,it will bring a larger computational cost.To overcome this deficiency,a three-level HOCDM with computational accuracy O(τ^(4)+h_(x)^(4)+h_(y)^(4))is constructed.Finally,with a series of numerical experiments,the theoretical accuracy and computational efficiency of the above methods are further verified.
基金Supported by the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inner product,the multi-dimensional oscillation problems are changed into the problems of which one-dimensional functional differential inequalities have not eventually positive solution.Some new sufficient conditions for the H-oscillation of all solutions of the equations are obtained under Dirichlet boundary condition,where H is a unit vector of RM.
基金supported by National Natural Science Foundation of China(Grant No.11971010)Scientific Research Project of Education Department of Hubei Province(Grant No.B2019184)。
文摘This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a class of compensated split-step balanced(CSSB)methods are suggested for solving the equations.Based on the one-sided Lipschitz condition and local Lipschitz condition,a strong convergence criterion of CSSB methods is derived.It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions.Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods.Moreover,in order to show the computational advantage of CSSB methods,we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.
基金supported by the National Natural Science Foundation of China(Nos.11671113,12071101).
文摘In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.
基金Supported by the NNSF of China(A011403)Supported by the Young Teachers Science Foundation of Beijing University of Civil Engineering and Architecture(100804107)
文摘A class of hyperbolic equations with continuous distributed deviating arguments is considered and its oscillation theorems are discussed.These theorems are of higher degree of generality and deal with the cases which are not covered by the known criteria.Particularly,these criteria extend and unify a number of existing results.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
文摘We prove the existence of global solutions to the initial-boundary-value problem on the half space R+ for a one-dimensional viscous ideal polytropic gas. Some suitable assumptions are made to guarantee the existence of smooth solutions. Employing the L2- energy estimate, we prove that the impermeable problem has a unique global solutionis.
基金This work was partially supported by the National Natural Science Foundation of China (10071045)Foundation of Zhejiang for Middle-young-aged Leader of Branch of Learning.
文摘In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibrium.
文摘Sufficient conditions are established for the oscillations of systems of parabolic equations with continuous distributed deviating arguments of the form where Ω is a bounded domain in Rn with piecewise smooth boundary эΩ, △is the Laplacian in Euclidean n-space Rn, and the integral in (1) is a Stieltjes integral.
文摘Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asymptotically) stable.1991 Mathematics Subject Classification: 39A12.
基金Supported by the NSF of Hebei Province and the NSF of Hebei Institute of Architecture and Civil Engineering.
文摘By introducing two integral operators and using the integral averaging technique, some new oscillation criteria are obtained for a class of high order neutral differential equation with continuous deviating arguments. These results are different from most known ones in the sense that they depend on the information only on a sequence of subintervals of [t0,∞), rather than on the whole half-line.
文摘The necessary and sufficient conditions for the oscillations of every solution of the nonlinear delay equation (t)+f(x(t-l))+g(x( t-k ))=0 are oblained.
基金Supported by the National Natural Science Foundation of China(No.11201084)the State Scholarship Fund grant[2013]3018 from the China Scholarship Council
文摘The paper de ls with oscillation of Runge-Kutta methods for equation x'(t) = ax(t) + aox([t]). The conditions of oscillation for the numerical methods are presented by considering the characteristic equation of the corresponding discrete scheme. It is proved that any nodes have the same oscillatory property as the integer nodes. Furthermore, the conditions under which the oscillation of the analytic solution is inherited by the numerical solution are obtained. The relationships between stability and oscillation are considered. Finally, some numerical experiments are given.