Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is a...Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic...展开更多
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are con...The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.展开更多
There are two separate traditional approaches to model contact problems: continuum and atomistic theory. Continuum theory is successfully used in many domains, but when the scale of the model comes to nanometer, conti...There are two separate traditional approaches to model contact problems: continuum and atomistic theory. Continuum theory is successfully used in many domains, but when the scale of the model comes to nanometer, continuum approximation meets challenges. Atomistic theory can catch the detailed behaviors of an individual atom by using molecular dynamics (MD) or quantum mechanics, although accurately, it is usually time-consuming. A multiscale method coupled MD and finite element (FE) is presented. To mesh the FE region automatically, an adaptive method based on the strain energy gradient is introduced to the multiscale method to constitute an adaptive multiscale method. Utilizing the proposed method, adhesive contacts between a rigid cylinder and an elastic substrate are studied, and the results are compared with full MD simulations. The process of FE meshes refinement shows that adaptive multiscale method can make FE mesh generation more flexible. Comparison of the displacements of boundary atoms in the overlap region with the results from full MD simulations indicates that adaptive multiscale method can transfer displacements effectively. Displacements of atoms and FE nodes on the center line of the multiscale model agree well with that of atoms in full MD simulations, which shows the continuity in the overlap region. Furthermore, the Von Mises stress contours and contact force distributions in the contact region are almost same as full MD simulations. The method presented combines multiscale method and adaptive technique, and can provide a more effective way to multiscale method and to the investigation on nanoscale contact problems.展开更多
A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the co...A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.展开更多
Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed...Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.展开更多
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta...Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.展开更多
Vertical rigidity of the space self adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three dimension elastic contact problem,which can update the existed deforming s...Vertical rigidity of the space self adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..展开更多
A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysi...A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysisincludes that of elastic and large deformation based uponupdated Lagrangian including buckling check.The resultsshow that the direct integration methods give differentresults in different contact-impact cases.展开更多
An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and...An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.展开更多
An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, hea...An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, heat conduction, and energy dissipation at the contact interface. A laser sheet illuminates the contact interface, and the transmitted laser sheet is projected onto a screen. Then the contact information is acquired from the screen by a camera. An improved Otsu method is proposed to process the data of experimental images. It can compute the threshold of the overall image and filter out all the pixels one by one. Through analyzing the experimental results, we describe the relationship between the real contact area and the positive pressure during a continuous loading process, at different loading rates, with the polymethyl methacrylate(PMMA)material. A hysteresis phenomenon in the relationship between the real contact area and the positive pressure is found and explained.展开更多
Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both bound...Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both boundary element method and compliance matrix methods: small number of inputting data, simple and convenient model, precise solution, short calculating time and requirements for a small quantity of computer memory. In comparison to the other BEM with friction problems, we obtain more precise solution and less iteration times. The effect of friction coefficient on contact area. contace state, and relative displacement, normal and tangential stress was analyzed by two examples. And because of the quickness of calculation of program and efficient method, we visualize the result in virtual reality (VR) environment. We grant the real time of VR and provide more immersion to users who ware the VR device.展开更多
This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to impro...This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.展开更多
The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for th...The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.展开更多
Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number o...Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is ''relative small''. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables.展开更多
According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears...According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears is researched, and computing formulas of power and rotation speed for equivalent gears are deduced. A numerical simulation of contact stress for non-circular gears has also been conducted based on the finite element method. By the comparison of fitting curves, the feasibility of using equivalent gears instead of non-circular gears to calculate the contact stress is testified.展开更多
文摘Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic...
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.
基金supported by the National Natural Science Foundation of China(Nos.11132007,11272155,and 10772085)the Fundamental Research Funds for the Central Universities(No.30920130112009)the 333 Project of Jiangsu Province of China(No.BRA2011172)
文摘The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.
基金supported by National Natural Science Foundation of China (Grant Nos. 51205313, 50975232)Northwestern Polytechnical University Foundation for Fundamental Research of China (Grant No.JC20110249)
文摘There are two separate traditional approaches to model contact problems: continuum and atomistic theory. Continuum theory is successfully used in many domains, but when the scale of the model comes to nanometer, continuum approximation meets challenges. Atomistic theory can catch the detailed behaviors of an individual atom by using molecular dynamics (MD) or quantum mechanics, although accurately, it is usually time-consuming. A multiscale method coupled MD and finite element (FE) is presented. To mesh the FE region automatically, an adaptive method based on the strain energy gradient is introduced to the multiscale method to constitute an adaptive multiscale method. Utilizing the proposed method, adhesive contacts between a rigid cylinder and an elastic substrate are studied, and the results are compared with full MD simulations. The process of FE meshes refinement shows that adaptive multiscale method can make FE mesh generation more flexible. Comparison of the displacements of boundary atoms in the overlap region with the results from full MD simulations indicates that adaptive multiscale method can transfer displacements effectively. Displacements of atoms and FE nodes on the center line of the multiscale model agree well with that of atoms in full MD simulations, which shows the continuity in the overlap region. Furthermore, the Von Mises stress contours and contact force distributions in the contact region are almost same as full MD simulations. The method presented combines multiscale method and adaptive technique, and can provide a more effective way to multiscale method and to the investigation on nanoscale contact problems.
基金The project supported by the National Natural Science Foundation of China (19772025)
文摘A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.
基金The Project Supported by National Natural Science Foundation of China
文摘Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.
基金supported jointly by the National Basic Research Program of China("973"Program)(No2014CB046200)the National Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.
文摘Vertical rigidity of the space self adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..
文摘A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysisincludes that of elastic and large deformation based uponupdated Lagrangian including buckling check.The resultsshow that the direct integration methods give differentresults in different contact-impact cases.
基金This work was financially supported by the National Nature Science Foundation of China(No.19902001), the National Excellent Yout
文摘An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.11272171)the Beijing Natural Science Foundation,China(Grant No.3132030)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, heat conduction, and energy dissipation at the contact interface. A laser sheet illuminates the contact interface, and the transmitted laser sheet is projected onto a screen. Then the contact information is acquired from the screen by a camera. An improved Otsu method is proposed to process the data of experimental images. It can compute the threshold of the overall image and filter out all the pixels one by one. Through analyzing the experimental results, we describe the relationship between the real contact area and the positive pressure during a continuous loading process, at different loading rates, with the polymethyl methacrylate(PMMA)material. A hysteresis phenomenon in the relationship between the real contact area and the positive pressure is found and explained.
基金Natural Science Foundation of China(No.5 98895 0 5 )
文摘Boundary element compliance matrix (BEM) method to deal with 3D elastic frictional contact problem was presented, and its calculation method and convergence criteria were discussed. It has the advantages of both boundary element method and compliance matrix methods: small number of inputting data, simple and convenient model, precise solution, short calculating time and requirements for a small quantity of computer memory. In comparison to the other BEM with friction problems, we obtain more precise solution and less iteration times. The effect of friction coefficient on contact area. contace state, and relative displacement, normal and tangential stress was analyzed by two examples. And because of the quickness of calculation of program and efficient method, we visualize the result in virtual reality (VR) environment. We grant the real time of VR and provide more immersion to users who ware the VR device.
基金supported by the National Natural Science Foundation of China(No.51379039)the Excellent Young Scientists Fund(No.51222904)
文摘This paper investigates the effects of charge parameters of the underwater contact explosion based on the axisymmetric smoothed particle hydrodynamics (SPH) method. The dynamic boundary particle is proposed to improve the pressure fluctuation and numerical accuracy near the symmetric axis. An in-depth study is carried out over the influence of charge shapes and detonation modes on the near-field loads in terms of the peak pressure and impulse of shock waves. For different charge shapes, the cylindrical charge with different length-diameter ratios may cause strong directivity of peak pressure and impulse in the near field. Compared with spherical charge, the peak pressure of cylindrical charge may be either weakened or enhanced in different directions. Within a certain range, the greater the length-diameter ratio is, the more obvious the effect will be. The weakened ratio near the detonation end may reach 25% approximately, while the enhanced ratio may reach around 20% in the opposite direction. However, the impulse in different directions seems to be uniform. For different detonation modes, compared with point-source explosion, the peak pressure of plane-source explosion is enhanced by about 5%. Besides, the impulse of plane-source explosion is enhanced by around 5% near the detonation end, but close to those of the point-source explosion in other directions. Based on the material constitutive relation in the axisymmetric coordinates, a simple case of underwater contact explosion is simulated to verify the above conclusions, showing that the charge parameters of underwater contact explosion should not be ignored.
基金theNationalKeyBasicResearchSpecialFoundation (G1 9990 3 2 80 5 ) the FoundationforUniversityKeyTeacherbytheMinistryofEducationo
文摘The solution of 3 D elastic-plastic frictional contact problems belongs to the un specified boundary problems where the interaction between two kinds of nonlinearities should occur. Considering the difficulties for the solution of 3 D frictional contact problems, the key part is the determination of the tangential slip states at the contact points, and a great amount of computing work is needed for a high accuracy result. A new method based on a combination of programming and iteration methods, which are respectively known as two main kinds of methods for contact analysis, was put forward to deal with 3 D elastic-plastic contact problems. Numerical results demonstrate the efficiency of the algorithm illustrated here.
基金The project supported by the National Natural Science Foundation of China
文摘Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is ''relative small''. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables.
文摘According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears is researched, and computing formulas of power and rotation speed for equivalent gears are deduced. A numerical simulation of contact stress for non-circular gears has also been conducted based on the finite element method. By the comparison of fitting curves, the feasibility of using equivalent gears instead of non-circular gears to calculate the contact stress is testified.