Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
Dear Editor,This letter addresses distributed optimization for resource allocation problems with time-varying objective functions and time-varying constraints.Inspired by the distributed average tracking(DAT)approach,...Dear Editor,This letter addresses distributed optimization for resource allocation problems with time-varying objective functions and time-varying constraints.Inspired by the distributed average tracking(DAT)approach,a distributed control protocol is proposed for optimal resource allocation.The convergence to a time-varying optimal solution within a predefined time is proved.Two numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi...To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.展开更多
Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become...Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become a significant instrument for propelling the energy revolution and ensuring energy security.Under increasingly stringent carbon emission constraints,how to achieve multi-dimensional improvements in energy utilization efficiency,renewable energy accommodation levels,and system economics-through the intelligent coupling of diverse energy carriers such as electricity,heat,natural gas,and hydrogen,and the effective application of market-based instruments like carbon trading and demand response-constitutes a critical scientific and engineering challenge demanding urgent solutions.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be ob...A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.展开更多
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topolo...In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.展开更多
Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer...Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer hierarchical constraint method is proposed by coupling principal component analysis(PCA) dimensionality reduction and e-constraint method to translate the original high-dimensional problem into a bi-objective problem. This paper selects the main design objectives by conducting PCA to the preliminary solution of original problem with consideration of the priority of design objectives. According to the e-constraint method, the design model is established by treating the two top-ranking design goals as objective and others as variable constraints. A series of bi-objective Pareto curves will be obtained by changing the variable constraints, and the favorable solution can be obtained by analyzing Pareto curve spectrum. This method is applied to the rotor airfoil design and makes great improvement in aerodynamic performance. It is shown that the method is convenient and efficient, beyond which, it facilitates decision-making of the highdimensional multi-objective engineering problem.展开更多
A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is...A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising.展开更多
This research focuses on the lightweight topology optimization method for structures under the premise of meeting the requirements of stability and vibration characteristics. A new topology optimization model with the...This research focuses on the lightweight topology optimization method for structures under the premise of meeting the requirements of stability and vibration characteristics. A new topology optimization model with the constraints of natural frequencies and critical buckling loads and the objective of minimizing the structural volume is established and solved based on the independent continuous mapping method. The eigenvalue equations and composite exponential filter functions are applied to convert the optimization formulation into a continuous, solvable mathematical programming model. In the process of topology optimization, suitable initial values of the filter functions are chosen to avoid local modes, and the dynamic frequency gap constraints are added in the optimal model to prevent mode switches. Furthermore, for the optimal structures with grey elements obtained by the continuous optimization model, the bisection-inverse iteration is applied to search the optimal discrete structures. Finally, a detailed scheme is given for the buckling and frequency topology optimization problem. Numerical examples illustrate that the modelling method of minimizing the economic index with given performance requirements is practical and feasible for multi-performance topology optimization problems.展开更多
It is an important topic to improve the redundancy of optimized configuration to resist the local failure in topology optimization of continuum structures.Such a fail-safe topology optimization problem has been solved...It is an important topic to improve the redundancy of optimized configuration to resist the local failure in topology optimization of continuum structures.Such a fail-safe topology optimization problem has been solved effectively in the ficld of statics.In this paper,the fail-safe topology optimization problem is extended to the field of frequency topology optimization.Based on the independent continuous mapping(ICM)method,the model of fail-safe topology optimization is established with the objective of minimal weight integrating with the discrete condition of topological variables and the constraint of the fundamental frequency.The fail-safe optimization model established above is substituted by a sequence of subproblems in the form of the quadratic program with exact second-order information and solved efficiently by the dual sequence quadratic programming(DSQP)algorithm.The numerical result reveals that the optimized fail-safe structure has more complex configuration and preserved materials than the structure obtained from the traditional frequency topology optimization,which means that the optimized fail-safe structure has higher redundancy.Moreover,the optimized fail-safe structure guarantees that the natural frequency meets the constraint of fundamental frequency when the local failure ocurs,which can avoid the structural frequency to be sensitive to local failure.The fail-safe optimirzation topology model is proved effective and feasible by four numerical examples.展开更多
In this paper,an Unmanned Aerial Vehicle(UAV)enabled Mobile Edge Computing(MEC)system is studied,in which UAV acts as server to offer computing offloading service to the Mobile Users(MUs)with limited computing capabil...In this paper,an Unmanned Aerial Vehicle(UAV)enabled Mobile Edge Computing(MEC)system is studied,in which UAV acts as server to offer computing offloading service to the Mobile Users(MUs)with limited computing capability and energy budget.We aim to minimize the total energy consumption of MUs by jointly optimizing the bit allocation for uplink,computing at the UAV and downlink,along with the UAV trajectory in a unified framework.To this end,a trajectory constraint model is employed to avoid sudden changes of velocity and acceleration during flying.Due to high-order information in use,we lead to a more reasonable nonconvex optimization problem than prior arts.An Alternating Direction Method of Multipliers(ADMM)method is introduced to solve the optimization problem,which is decomposed into a set of easy subproblems,to meet the requirement on the efficiency in edge computing.Numerical results demonstrate that our approach leads a smoother UAV trajectory,significantly save the energy consumption for UAV during flying.展开更多
The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and ...The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and warping deformation is taken into consideration for2-dimension analysis, while the one-dimension nonlinear differential equations of blade motion areformulated via Hamilton's principle. The rotor hub vibratory loads is chosen as the objectivefunction, while rotor blade section construction parameter, composite material ply structure andblade tip swept angle as the design variables, and au-torotation inertia, natural frequency andaeroelastic stability as the constraints. A 3-bladed rotor is designed, as an example, based on thevibratory hub load reduction optimization process with swept tip angle and composite material. Thecalculating results show a 24. 9 percent-33 percent reduction of 3/rev hub loads in comparison withthe base-line rotor.展开更多
This paper presents a novel topology optimization method to design graded lattice structures to minimize the volume subject to displacement constraints based on the independent continuous mapping(ICM)method.First,the ...This paper presents a novel topology optimization method to design graded lattice structures to minimize the volume subject to displacement constraints based on the independent continuous mapping(ICM)method.First,the effective elastic properties of graded unit cells are analyzed by the strain energy-based homogenization method.A surrogate model using quartic polynomial interpolation is built to map the independent continuous topological variable to the effective elastic matrix of the unit cell and set up the relationship between the macroscale structure and microscale unit cells.Second,a lightweight topology optimization model is established,which can be transformed into an explicitly standard quadratic programming problem by sensitivity analysis and solved by dual sequential quadratic programming.Third,several numerical examples demonstrate that graded lattice structures have a better lightweight effect than uniform lattice structures,which validates the effectiveness and feasibility of the proposed method.The results show that graded lattice structures become lighter with increasing displacement constraints.In addition,some diverse topological configurations are obtained.This method provides a reference for the graded lattice structure design and expands the application of the ICM method.展开更多
For the stress-constrained topology optimization of a turbine disk under centrifugal loads,the jagged boundaries of the mesh and the gray densities on the solid/void interfaces could make the calculated stress field i...For the stress-constrained topology optimization of a turbine disk under centrifugal loads,the jagged boundaries of the mesh and the gray densities on the solid/void interfaces could make the calculated stress field inconsistent with the actual value.It may result in overestimating the maximum stress and thus affect the effectiveness of stress constraints.This paper proposes a new method for predicting the maximum stress to overcome the difficulty.In the process,a predicted density is newly defined to obtain stable boundaries with thin layers of gray elements,a transition factor is innovatively proposed to evaluate the effects of intermediate-density elements,two different stiffness penalty schemes are flexibly used to calculate the elastic modulus of elements,and a linear stress penalty is further adopted to relax the stress field of the structure.The proposed approach for predicting the maximum stress value is verified by the analysis of a structure with smooth boundaries and the topology optimization of a turbine disk.An updating scheme of the stress constraint in the topology optimization is also developed using the predicted maximum stress.Some key ingredients affecting the optimization results are discussed in detail.The results prove the effectiveness and efficacy of the proposed maximum stress prediction and developed stress constraint methods.展开更多
A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static met...A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.展开更多
Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirect...Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration.展开更多
This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight enviro...This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks.展开更多
A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases(MLCs)is presented.A spatial truss-like material model with three families of orthotropic members is ado...A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases(MLCs)is presented.A spatial truss-like material model with three families of orthotropic members is adopted,in which the three families of members along three orthotropic directions are embedded continuously in a weak matrix.The densities and directions of the three families of members at the nodes are taken as the design variables.An optimality criterion is suggested based on the concept of directional stiffness.First,under each single-load case(SLC),the truss-like structure is optimized as per the fully stressed criterion.Accordingly,the directional stiffness of the optimal structure under an SLC at every node is obtained.Next,the directional stiffness of the truss-like structure under MLCs is determined by ensuring that the directional stiffness is as similar as possible to the maximum directional stiffness of the optimal structure under every SLC along all directions.Finally,the directions and densities of the members in the optimal truss-like structures under MLCs are obtained by solving the eigenvalue problems of the coefficient matrix of the directional stiffness at every node.Two examples are presented to demonstrate the effectiveness and efficiency of the method.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
基金supported by National Key Research and Development Program of China(2024YFE0214000)National Natural Science Foundation of China(62173308)+3 种基金Natural Science Foundation of Zhejiang Province of China(LRG25F030002)Zhejiang Province Leading Geese Plan(2025C01056)Jinhua Science and Technology Project(2022-1-042)Natural Science Foundation of Jiangsu Province(BK20240009).
文摘Dear Editor,This letter addresses distributed optimization for resource allocation problems with time-varying objective functions and time-varying constraints.Inspired by the distributed average tracking(DAT)approach,a distributed control protocol is proposed for optimal resource allocation.The convergence to a time-varying optimal solution within a predefined time is proved.Two numerical examples are given to illustrate the effectiveness of the proposed approach.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706704)the Academician Special Science Research Project of CCCC(No.YSZX-03-2022-01-B).
文摘To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.
文摘Against the backdrop of active global responses to climate change and the accelerated green and low-carbon energy transition,the co-optimization and innovative mechanism design of multimodal energy systems have become a significant instrument for propelling the energy revolution and ensuring energy security.Under increasingly stringent carbon emission constraints,how to achieve multi-dimensional improvements in energy utilization efficiency,renewable energy accommodation levels,and system economics-through the intelligent coupling of diverse energy carriers such as electricity,heat,natural gas,and hydrogen,and the effective application of market-based instruments like carbon trading and demand response-constitutes a critical scientific and engineering challenge demanding urgent solutions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
基金The project supported by the State Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.
基金supported by the National Natural Science Foundation of China (10872036)the High Technological Research and Development Program of China (2008AA04Z118)the Airspace Natural Science Foundation (2007ZA23007)
文摘In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
基金supported by the National Natural Science Foundation of China (No. 11402288 and 11372254)the National Basic Research Program of China (No. 2014CB744804)
文摘Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer hierarchical constraint method is proposed by coupling principal component analysis(PCA) dimensionality reduction and e-constraint method to translate the original high-dimensional problem into a bi-objective problem. This paper selects the main design objectives by conducting PCA to the preliminary solution of original problem with consideration of the priority of design objectives. According to the e-constraint method, the design model is established by treating the two top-ranking design goals as objective and others as variable constraints. A series of bi-objective Pareto curves will be obtained by changing the variable constraints, and the favorable solution can be obtained by analyzing Pareto curve spectrum. This method is applied to the rotor airfoil design and makes great improvement in aerodynamic performance. It is shown that the method is convenient and efficient, beyond which, it facilitates decision-making of the highdimensional multi-objective engineering problem.
文摘A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising.
基金the National Natural Science Foundation of China (11872080, 11172013)Natural Science Foundation of Beijing Municipality (3192005)Beijing Education Committee Development Project (SQKM201610005001).
文摘This research focuses on the lightweight topology optimization method for structures under the premise of meeting the requirements of stability and vibration characteristics. A new topology optimization model with the constraints of natural frequencies and critical buckling loads and the objective of minimizing the structural volume is established and solved based on the independent continuous mapping method. The eigenvalue equations and composite exponential filter functions are applied to convert the optimization formulation into a continuous, solvable mathematical programming model. In the process of topology optimization, suitable initial values of the filter functions are chosen to avoid local modes, and the dynamic frequency gap constraints are added in the optimal model to prevent mode switches. Furthermore, for the optimal structures with grey elements obtained by the continuous optimization model, the bisection-inverse iteration is applied to search the optimal discrete structures. Finally, a detailed scheme is given for the buckling and frequency topology optimization problem. Numerical examples illustrate that the modelling method of minimizing the economic index with given performance requirements is practical and feasible for multi-performance topology optimization problems.
基金the National Natural Science Foundation of China(Grant 11872080).
文摘It is an important topic to improve the redundancy of optimized configuration to resist the local failure in topology optimization of continuum structures.Such a fail-safe topology optimization problem has been solved effectively in the ficld of statics.In this paper,the fail-safe topology optimization problem is extended to the field of frequency topology optimization.Based on the independent continuous mapping(ICM)method,the model of fail-safe topology optimization is established with the objective of minimal weight integrating with the discrete condition of topological variables and the constraint of the fundamental frequency.The fail-safe optimization model established above is substituted by a sequence of subproblems in the form of the quadratic program with exact second-order information and solved efficiently by the dual sequence quadratic programming(DSQP)algorithm.The numerical result reveals that the optimized fail-safe structure has more complex configuration and preserved materials than the structure obtained from the traditional frequency topology optimization,which means that the optimized fail-safe structure has higher redundancy.Moreover,the optimized fail-safe structure guarantees that the natural frequency meets the constraint of fundamental frequency when the local failure ocurs,which can avoid the structural frequency to be sensitive to local failure.The fail-safe optimirzation topology model is proved effective and feasible by four numerical examples.
基金the Defense Industrial Technology Development Program of China(No.JCKY2017601C006)the National Key Research and Development Program of China(No.2016YFB0502602)+1 种基金the National Natural Science Foundation of China(No.91538204)in part supported by Shenzhen Science and Technology Program,China(No.KQTD2016112515134654)。
文摘In this paper,an Unmanned Aerial Vehicle(UAV)enabled Mobile Edge Computing(MEC)system is studied,in which UAV acts as server to offer computing offloading service to the Mobile Users(MUs)with limited computing capability and energy budget.We aim to minimize the total energy consumption of MUs by jointly optimizing the bit allocation for uplink,computing at the UAV and downlink,along with the UAV trajectory in a unified framework.To this end,a trajectory constraint model is employed to avoid sudden changes of velocity and acceleration during flying.Due to high-order information in use,we lead to a more reasonable nonconvex optimization problem than prior arts.An Alternating Direction Method of Multipliers(ADMM)method is introduced to solve the optimization problem,which is decomposed into a set of easy subproblems,to meet the requirement on the efficiency in edge computing.Numerical results demonstrate that our approach leads a smoother UAV trajectory,significantly save the energy consumption for UAV during flying.
文摘The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and warping deformation is taken into consideration for2-dimension analysis, while the one-dimension nonlinear differential equations of blade motion areformulated via Hamilton's principle. The rotor hub vibratory loads is chosen as the objectivefunction, while rotor blade section construction parameter, composite material ply structure andblade tip swept angle as the design variables, and au-torotation inertia, natural frequency andaeroelastic stability as the constraints. A 3-bladed rotor is designed, as an example, based on thevibratory hub load reduction optimization process with swept tip angle and composite material. Thecalculating results show a 24. 9 percent-33 percent reduction of 3/rev hub loads in comparison withthe base-line rotor.
基金the National Natural Science Foundation of China(Grant No.11872080)Beijing Natural Science Foundation(Grant No.3192005)Taishan University Youth Teacher Science Foundation(Grant No.QN-01-201901).
文摘This paper presents a novel topology optimization method to design graded lattice structures to minimize the volume subject to displacement constraints based on the independent continuous mapping(ICM)method.First,the effective elastic properties of graded unit cells are analyzed by the strain energy-based homogenization method.A surrogate model using quartic polynomial interpolation is built to map the independent continuous topological variable to the effective elastic matrix of the unit cell and set up the relationship between the macroscale structure and microscale unit cells.Second,a lightweight topology optimization model is established,which can be transformed into an explicitly standard quadratic programming problem by sensitivity analysis and solved by dual sequential quadratic programming.Third,several numerical examples demonstrate that graded lattice structures have a better lightweight effect than uniform lattice structures,which validates the effectiveness and feasibility of the proposed method.The results show that graded lattice structures become lighter with increasing displacement constraints.In addition,some diverse topological configurations are obtained.This method provides a reference for the graded lattice structure design and expands the application of the ICM method.
基金co-supported by the National Natural Science Foundation of China(Nos.52005421 and 12102375)the Natural Science Foundation of Fujian Province of China(No.2020J05020)+2 种基金the National Science and Technology Major Project,China(No.J2019-I-0013-0013)the Fundamental Research Funds for the Central Universities,China(No.20720210090)the project funded by the China Postdoctoral Science Foundation(Nos.2020M682584 and 2021T140634).
文摘For the stress-constrained topology optimization of a turbine disk under centrifugal loads,the jagged boundaries of the mesh and the gray densities on the solid/void interfaces could make the calculated stress field inconsistent with the actual value.It may result in overestimating the maximum stress and thus affect the effectiveness of stress constraints.This paper proposes a new method for predicting the maximum stress to overcome the difficulty.In the process,a predicted density is newly defined to obtain stable boundaries with thin layers of gray elements,a transition factor is innovatively proposed to evaluate the effects of intermediate-density elements,two different stiffness penalty schemes are flexibly used to calculate the elastic modulus of elements,and a linear stress penalty is further adopted to relax the stress field of the structure.The proposed approach for predicting the maximum stress value is verified by the analysis of a structure with smooth boundaries and the topology optimization of a turbine disk.An updating scheme of the stress constraint in the topology optimization is also developed using the predicted maximum stress.Some key ingredients affecting the optimization results are discussed in detail.The results prove the effectiveness and efficacy of the proposed maximum stress prediction and developed stress constraint methods.
基金Project supported by the National Natural Science Foundation of China (Nos. 10002005 and 10421002)the Natural Science Foundation of Tianjin (No.02360081)the Education Committee Foundation of Tianjin (No.20022104)the Program for Changjiang Scholars and Innovative Research Team in University of China and the 211 Foundation of Dalian University of Technology
文摘A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.
基金Chinese National Natural Science Foundation(No.51890881)Science and Technology Project of Hebei Education Department(Nos.ZD2020156,QN2018228).
文摘Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration.
基金National Natural Science Foundation of China(No.61903350)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks.
基金The research reported in this paper was financially supported by the Natural Science Foundation of China(No.11572131)the Subsidized Project for Postgraduates’Innovative Fund in Scientific Research of Huaqiao University(No.17011086002).
文摘A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases(MLCs)is presented.A spatial truss-like material model with three families of orthotropic members is adopted,in which the three families of members along three orthotropic directions are embedded continuously in a weak matrix.The densities and directions of the three families of members at the nodes are taken as the design variables.An optimality criterion is suggested based on the concept of directional stiffness.First,under each single-load case(SLC),the truss-like structure is optimized as per the fully stressed criterion.Accordingly,the directional stiffness of the optimal structure under an SLC at every node is obtained.Next,the directional stiffness of the truss-like structure under MLCs is determined by ensuring that the directional stiffness is as similar as possible to the maximum directional stiffness of the optimal structure under every SLC along all directions.Finally,the directions and densities of the members in the optimal truss-like structures under MLCs are obtained by solving the eigenvalue problems of the coefficient matrix of the directional stiffness at every node.Two examples are presented to demonstrate the effectiveness and efficiency of the method.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.