The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The...The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.展开更多
R-DSP(Radar Digital Signal Processor)芯片中BSU(Branch Shift Unit)运算部件具有较大的设计规模和复杂度,传统Verilog验证平台难以满足其验证需求问题。针对该问题,文中采用UVM(Universal Verification Methodology)方法对BSU运算部...R-DSP(Radar Digital Signal Processor)芯片中BSU(Branch Shift Unit)运算部件具有较大的设计规模和复杂度,传统Verilog验证平台难以满足其验证需求问题。针对该问题,文中采用UVM(Universal Verification Methodology)方法对BSU运算部件进行功能验证。搭建基于SystemVerilog语言实现的UVM验证平台,使用定向测试和带约束的随机测试进行验证,并采用覆盖率驱动的方法指导测试用例的生成,以充分覆盖BSU运算部件的各个功能和代码路径。经过多轮测试激励验证,代码覆盖率接近100%,完成了对BSU运算部件的功能验证。所提方法为R-DSP芯片中的ALU(Arithmetic Logic Unit)、AGU(Address Generation Unit)、MU(Multiplication Unit)等运算部件的验证工作提供了参考和借鉴。展开更多
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.