期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
1
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Privacy Distributed Constrained Optimization Over Time-Varying Unbalanced Networks and Its Application in Federated Learning
2
作者 Mengli Wei Wenwu Yu +2 位作者 Duxin Chen Mingyu Kang Guang Cheng 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期335-346,共12页
This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into accoun... This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into account recent progress and addressing these concerns separately, there remains a lack of solutions offering theoretical guarantees for both privacy protection and constrained ZOO over time-varying unbalanced graphs.We hereby propose a novel algorithm, termed the differential privacy(DP) distributed push-sum based zeroth-order constrained optimization algorithm(DP-ZOCOA). Operating over time-varying unbalanced graphs, DP-ZOCOA obviates the need for supplemental suboptimization problem computations, thereby reducing overhead in comparison to distributed primary-dual methods. DP-ZOCOA is specifically tailored to tackle constrained ZOO problems over time-varying unbalanced graphs,offering a guarantee of convergence to the optimal solution while robustly preserving privacy. Moreover, we provide rigorous proofs of convergence and privacy for DP-ZOCOA, underscoring its efficacy in attaining optimal convergence without constraints. To enhance its applicability, we incorporate DP-ZOCOA into the federated learning framework and formulate a decentralized zeroth-order constrained federated learning algorithm(ZOCOA-FL) to address challenges stemming from the timevarying imbalance of communication topology. Finally, the performance and effectiveness of the proposed algorithms are thoroughly evaluated through simulations on distributed least squares(DLS) and decentralized federated learning(DFL) tasks. 展开更多
关键词 constrained distributed optimization decentralized federated learning(DFL) differential privacy(DP) time-varying unbalanced graphs zeroth-order gradient
在线阅读 下载PDF
Improved Differential Evolution with Shrinking Space Technique for Constrained Optimization 被引量:7
3
作者 Chunming FU Yadong XU +2 位作者 Chao JIANG Xu HAN Zhiliang HUANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期553-565,共13页
Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique an... Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems. 展开更多
关键词 constrained optimization - Differentialevolution Adaptive trade-off model Shrinking spacetechnique
在线阅读 下载PDF
A hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimization 被引量:5
4
作者 龙文 张文专 +1 位作者 黄亚飞 陈义雄 《Journal of Central South University》 SCIE EI CAS 2014年第8期3197-3204,共8页
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at... Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm. 展开更多
关键词 constrained optimization problem cuckoo search algorithm pattem search feasibility-based rule engineeringoptimization
在线阅读 下载PDF
A New Strategy for Solving a Class of Constrained Nonlinear Optimization Problems Related to Weather and Climate Predictability 被引量:8
5
作者 段晚锁 骆海英 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期741-749,共9页
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o... There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate. 展开更多
关键词 constrained nonlinear optimization problems PREDICTABILITY ALGORITHMS
在线阅读 下载PDF
Evolutionary Multitasking With Global and Local Auxiliary Tasks for Constrained Multi-Objective Optimization 被引量:5
6
作者 Kangjia Qiao Jing Liang +3 位作者 Zhongyao Liu Kunjie Yu Caitong Yue Boyang Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1951-1964,共14页
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj... Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA. 展开更多
关键词 constrained multi-objective optimization evolutionary multitasking(EMT) global auxiliary task knowledge transfer local auxiliary task
在线阅读 下载PDF
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems 被引量:3
7
作者 Jeffrey O.Agushaka Absalom E.Ezugwu +3 位作者 Oyelade N.Olaide Olatunji Akinola Raed Abu Zitar Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1263-1295,共33页
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but... This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms. 展开更多
关键词 Improved dwarf mongoose Nature-inspired algorithms constrained optimization Unconstrained optimization Engineering design problems
在线阅读 下载PDF
A SUPERLINEARLY AND QUADRATICALLY CONVERGENT SQP TYPE FEASIBLE METHOD FOR CONSTRAINED OPTIMIZATION 被引量:3
8
作者 JianJinbao ZhangKecun XueShengjia 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2000年第3期319-331,共13页
A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the m... A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the master algorithm are generated by only one quadratic programming, and its step\|size is always one, the directions of the auxiliary algorithm are new “second\|order” feasible descent. Under suitable assumptions,the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence. 展开更多
关键词 constrained optimization SQP feasible method convergence rate of convergence.
在线阅读 下载PDF
Even Search in a Promising Region for Constrained Multi-Objective Optimization 被引量:3
9
作者 Fei Ming Wenyin Gong Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期474-486,共13页
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,... In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs. 展开更多
关键词 constrained multi-objective optimization even search evolutionary algorithms promising region real-world problems
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
10
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
Multiobjective evolutionary algorithm for dynamic nonlinear constrained optimization problems 被引量:2
11
作者 Liu Chun'an Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期204-210,共7页
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th... A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP. 展开更多
关键词 dynamic optimization nonlinear constrained optimization evolutionary algorithm optimal solutions
在线阅读 下载PDF
Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization 被引量:1
12
作者 GAO Wei-Shang SHAO Cheng 《自动化学报》 EI CSCD 北大核心 2014年第11期2469-2479,共11页
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg... Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions. 展开更多
关键词 constrained optimization evolutionary algorithm MULTI-AGENTS swarm intelligence
在线阅读 下载PDF
Feasible SQP Descent Method for Inequality Constrained Optimization Problems and Its Convergence 被引量:1
13
作者 张和平 叶留青 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期469-474,共6页
In this paper,the new SQP feasible descent algorithm for nonlinear constrained optimization problems presented,and under weaker conditions of relative,we proofed the new method still possesses global convergence and i... In this paper,the new SQP feasible descent algorithm for nonlinear constrained optimization problems presented,and under weaker conditions of relative,we proofed the new method still possesses global convergence and its strong convergence.The numerical results illustrate that the new methods are valid. 展开更多
关键词 nonlinearly constrained optimization SQP the generalized projection line search global convergence strong convergence.
在线阅读 下载PDF
A TRUST REGION METHOD WITH A CONIC MODEL FOR NONLINEARLY CONSTRAINED OPTIMIZATION 被引量:1
14
作者 Wang Chengjing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第3期263-275,共13页
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva... Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established. 展开更多
关键词 trust region method conic model constrained optimization nonlinear programming.
在线阅读 下载PDF
Remarks on a benchmark nonlinear constrained optimization problem 被引量:1
15
作者 Luo Yazhong Lei Yongjun Tang Guojin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期551-553,共3页
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulat... Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions. 展开更多
关键词 nonlinear constrained optimization parallel simulated annealing Kuhn-Tucker theorem.
在线阅读 下载PDF
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems 被引量:1
16
作者 Kangjia Qiao Jing Liang +4 位作者 Kunjie Yu Xuanxuan Ban Caitong Yue Boyang Qu Ponnuthurai Nagaratnam Suganthan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1819-1835,共17页
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop... Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods. 展开更多
关键词 constrained multi-objective optimization(CMOPs) evolutionary multitasking knowledge transfer single constraint.
在线阅读 下载PDF
MODIFIED INTEGRAL-LEVEL SET METHOD FOR THE CONSTRAINED SOLVING GLOBAL OPTIMIZATION 被引量:1
17
作者 田蔚文 邬冬华 +1 位作者 张连生 李善良 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第2期202-209,共8页
The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable ... The constrained global optimization problem being considered, a modified integral_level set method was illustrated based on Chew_Zheng's paper on Integral Global Optimization and (Wu's) paper on Implementable Algorithm Convergence of Modified Integral_Level Set Method for Global Optimization Problem. It has two characters: 1) Each phase must construct a new function which has the same global optimal value as that of primitive objective function; 2) Comparing it with (Zheng's) method, solving level set procedure is avoided. An implementable algorithm also is given and it is proved that this algorithm is convergent. 展开更多
关键词 constrained global optimization integral-level set CONVERGENCE
在线阅读 下载PDF
A new primal-dual path-following interior-point algorithm for linearly constrained convex optimization 被引量:1
18
作者 张敏 白延琴 王国强 《Journal of Shanghai University(English Edition)》 CAS 2008年第6期475-480,共6页
In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions a... In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path.At each iteration, only full-Newton steps are used.Finally, the favorable polynomial complexity bound for the algorithm with the small-update method is deserved, namely, O(√n log n /ε). 展开更多
关键词 linearly constrained convex optimization (LCCO) interior-point algorithm small-update method polynomial complexity
在线阅读 下载PDF
Novel constrained multi-objective biogeography-based optimization algorithm for robot path planning 被引量:1
19
作者 XU Zhi-dan MO Hong-wei 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期96-101,共6页
A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives... A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP. 展开更多
关键词 constrained multi-objective optimization biogeography-based optimization robot pathplanning
在线阅读 下载PDF
An improved flexible tolerance method for solving nonlinear constrained optimization problems:Application in mass integration
20
作者 Alice Medeiros Lima Wu Hong Kwong Antonio José Goncalves Cruz 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期617-631,共15页
This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of ... This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of the methods were taken from G-Suite functions, and the methods with the best performance were applied in mass integration problems. Four methods were proposed:(1) flexible tolerance method(FTM) using adaptive parameters(FTMA),(2) flexible tolerance method with scaling(FTMS) and with adaptive parameters(FTMAS),(3) FTMS including the barrier modification(MFTMS) and(4) MFTMS hybridized with PSO(MFTMS-PSO). The success rates of these methods were 100%(MFTMS), 85%(MFTMS-PSO), 40%(FTMAS) and 30%(FTMA).Numerical experiments indicated that the MFTMS could efficiently and reliably improve the accuracy of global optima. In mass integration, the method was able, from current process situation, to reach the optimum process configuration that includes integration issues, which was not possible using FTM in its standard formulation. The hybridization of FTMS with PSO(without barrier), FTMS-PSO, was also able to solve mass integration problems efficiently. 展开更多
关键词 Flexible tolerance method Adaptive parameters SCALING constrained optimization BARRIER PSO Mass integration
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部