期刊文献+
共找到249,894篇文章
< 1 2 250 >
每页显示 20 50 100
Diagnostic value of real-time computer-aided detection for precancerous lesion during esophagogastroduodenoscopy:A metaanalysis
1
作者 Zong-Yang Li Ya-Hui Liu Hong-Qiao Cai 《World Journal of Gastrointestinal Surgery》 2025年第11期473-488,共16页
BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in de... BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in detecting precancerous lesions.In contrast,real-time computer-aided detection(CAD)systems enhanced by artificial intelligence(AI)systems,although they may increase unnecessary medical procedures,can provide immediate feedback during examination,thereby improving the accuracy of lesion detection.This article aims to conduct a meta-analysis of the diagnostic performance of CAD systems in identifying precancerous lesions of UGI tract cancer during esophagogastroduodenoscopy(EGD),evaluate their potential clinical application value,and determine the direction for further research.AIM To investigate the improvement of the efficiency of EGD examination by the realtime AI-enabled real-time CAD system(AI-CAD)system.METHODS PubMed,EMBASE,Web of Science and Cochrane Library databases were searched by two independent reviewers to retrieve literature with per-patient analysis with a deadline up until April 2025.A meta-analysis was performed with R Studio software(R4.5.0).A random-effects model was used and subgroup analysis was carried out to identify possible sources of heterogeneity.RESULTS The initial search identified 802 articles.According to the inclusion criteria,2113 patients from 10 studies were included in this meta-analysis.The pooled accuracy difference,logarithmic difference of diagnostic odds ratios,sensitivity,specificity and the area under the summary receiver operating characteristic curve(area under the curve)of both AI group and endoscopist group for detecting precancerous lesion were 0.16(95%CI:0.12-0.20),-0.19(95%CI:-0.75-0.37),0.89(95%CI:0.85-0.92,AI group),0.67(95%CI:0.63-0.71,endoscopist group),0.89(95%CI:0.84-0.93,AI group),0.77(95%CI:0.70-0.83,endoscopist group),0.928(95%CI:0.841-0.948,AI group),0.722(95%CI:0.677-0.821,endoscopist group),respectively.CONCLUSION The present studies further provide evidence that the AI-CAD is a reliable endoscopic diagnostic tool that can be used to assist endoscopists in detection of precancerous lesions in the UGI tract.It may be introduced on a large scale for clinical application to enhance the accuracy of detecting precancerous lesions in the UGI tract. 展开更多
关键词 Artificial intelligence Real-time computer-aided detection system Precancerous lesion ESOPHAGOGASTRODUODENOSCOPY ENDOSCOPY Upper gastrointestinal tract Diagnostic performance META-ANALYSIS
在线阅读 下载PDF
Bridging the gap:Computer-aided detection and Yamada classification system matches expert performance
2
作者 Lin Qiu Jian Ding +23 位作者 Chun-Xiao Lai Hui Yang Feng Li Zhi-Jian Li Wen Wu Gui-Ming Liu Quan-Sheng Guan Xi-Gang Zhang Rui-Ya Zhang Li-Zhi Yi Zhi-Fang Zhao Lv Deng Wei-Jian Lun Zhen-Yu Wang Wei-Ming Lu Wei-Guang Qiao Su-Ling Wang Si-Mei Chen Wen-Qian Shen Li-Min Cheng Ben-Gui Zhu Shun-Hui He Jie Dai Yang Bai 《World Journal of Gastroenterology》 2025年第40期86-96,共11页
BACKGROUND Computer-aided diagnosis(CAD)may assist endoscopists in identifying and classifying polyps during colonoscopy for detecting colorectal cancer.AIM To build a system using CAD to detect and classify polyps ba... BACKGROUND Computer-aided diagnosis(CAD)may assist endoscopists in identifying and classifying polyps during colonoscopy for detecting colorectal cancer.AIM To build a system using CAD to detect and classify polyps based on the Yamada classification.METHODS A total of 24045 polyp and 72367 nonpolyp images were obtained.We established a computer-aided detection and Yamada classification model based on the YOLOv7 neural network algorithm.Frame-based and image-based evaluation metrics were employed to assess the performance.RESULTS Computer-aided detection and Yamada classification screened polyps with a precision of 96.7%,a recall of 95.8%,and an F1-score of 96.2%,outperforming those of all groups of endoscopists.In regard to the Yamada classification of polyps,the CAD system displayed a precision of 82.3%,a recall of 78.5%,and an F1-score of 80.2%,outper-forming all levels of endoscopists.In addition,according to the image-based method,the CAD had an accuracy of 99.2%,a specificity of 99.5%,a sensitivity of 98.5%,a positive predictive value of 99.0%,a negative predictive value of 99.2%for polyp detection and an accuracy of 97.2%,a specificity of 98.4%,a sensitivity of 79.2%,a positive predictive value of 83.0%,and a negative predictive value of 98.4%for poly Yamada classification.CONCLUSION We developed a novel CAD system based on a deep neural network for polyp detection,and the Yamada classi-fication outperformed that of nonexpert endoscopists.This CAD system could help community-based hospitals enhance their effectiveness in polyp detection and classification. 展开更多
关键词 Yamada classification ENDOSCOPY Deep learning Artificial intelligence computer-aided diagnosis
在线阅读 下载PDF
Automatic Fetal Segmentation Designed on Computer-Aided Detection with Ultrasound Images
3
作者 Mohana Priya Govindarajan Sangeetha Subramaniam Karuppaiya Bharathi 《Computers, Materials & Continua》 SCIE EI 2024年第11期2967-2986,共20页
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of pregnancy.The HC might be ut... In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of pregnancy.The HC might be utilized toward determining gestational age and tracking fetal development.This automated approach is particularly valuable in low-resource settings where access to trained sonographers is limited.The CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal skull.We identified the HC using dynamic programming,an elliptical fit,and a Hough transform.The computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test set.We used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,respectively.The regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of days.The mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 days.The outcomes reveal that the computer-aided detection(CAD)program outperforms an expert sonographer.When paired with the classifications reported in the literature,the provided system achieves results that are comparable or even better.We have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation. 展开更多
关键词 Fetal growth SEGMENTATION ultrasound images computer-aided detection gestational age crown-rump length head circumference
在线阅读 下载PDF
Computer-Aided Detection for CT Colonography
4
作者 徐嫣然 赵俊 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第5期531-537,共7页
CT colonography (CTC) is a non-invasive screening technique for the detection of eolorectal polyps, as an alternative to optical colonoscopy in clinical practice. Computer-aided detection (CAD) for CTC refers to a... CT colonography (CTC) is a non-invasive screening technique for the detection of eolorectal polyps, as an alternative to optical colonoscopy in clinical practice. Computer-aided detection (CAD) for CTC refers to a scheme which automatically detects colorectal polyps and masses in CT images of the colon. It has the potential to increase radiologists' detection performance and greatly shorten the detection time. Over the years, technical developments have advanced CAD for CTC substantially. In this paper, key techniques used in CAD for polyp detection are reviewed. Illustrations about the performance of existing CAD schemes show their relatively high sensitivity and low false positive rate. However, these CAD schemes are still suffering from technical or clinical problems. Some existing challenges faced by CAD are also pointed out at the end of this paper. 展开更多
关键词 computer-aided detection(CAD) COLONOGRAPHY POLYPS false positive
原文传递
Improved computer-aided detection of pulmonary nodules via deep learning in the sinogram domain
5
作者 Yongfeng Gao Jiaxing Tan +2 位作者 Zhengrong Liang Lihong Li Yumei Huo 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期129-137,共9页
Computer aided detection(CADe)of pulmonary nodules plays an important role in assisting radiologists’diagnosis and alleviating interpretation burden for lung cancer.Current CADe systems,aiming at simulating radiologi... Computer aided detection(CADe)of pulmonary nodules plays an important role in assisting radiologists’diagnosis and alleviating interpretation burden for lung cancer.Current CADe systems,aiming at simulating radiologists’examination procedure,are built upon computer tomography(CT)images with feature extraction for detection and diagnosis.Human visual perception in CT image is reconstructed from sinogram,which is the original raw data acquired from CT scanner.In this work,different from the conventional image based CADe system,we propose a novel sinogram based CADe system in which the full projection information is used to explore additional effective features of nodules in the sinogram domain.Facing the challenges of limited research in this concept and unknown effective features in the sinogram domain,we design a new CADe system that utilizes the self-learning power of the convolutional neural network to learn and extract effective features from sinogram.The proposed system was validated on 208 patient cases from the publicly available online Lung Image Database Consortium database,with each case having at least one juxtapleural nodule annotation.Experimental results demonstrated that our proposed method obtained a value of 0.91 of the area under the curve(AUC)of receiver operating characteristic based on sinogram alone,comparing to 0.89 based on CT image alone.Moreover,a combination of sinogram and CT image could further improve the value of AUC to 0.92.This study indicates that pulmonary nodule detection in the sinogram domain is feasible with deep learning. 展开更多
关键词 computer-aided detection Computed tomography Deep learning LUNG SINOGRAM
在线阅读 下载PDF
Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network 被引量:5
6
作者 Jing Lu Yan Wu +4 位作者 Mingyan Hu Yao Xiong Yapeng Zhou Ziliang Zhao Liutong Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期365-377,共13页
Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing ... Background:The main cause of breast cancer is the deterioration of malignant tumor cells in breast tissue.Early diagnosis of tumors has become the most effective way to prevent breast cancer.Method:For distinguishing between tumor and non-tumor in MRI,a new type of computer-aided detection CAD system for breast tumors is designed in this paper.The CAD system was constructed using three networks,namely,the VGG16,Inception V3,and ResNet50.Then,the influence of the convolutional neural network second migration on the experimental results was further explored in the VGG16 system.Result:CAD system built based on VGG16,Inception V3,and ResNet50 has higher performance than mainstream CAD systems.Among them,the system built based on VGG16 and ResNet50 has outstanding performance.We further explore the impact of the secondary migration on the experimental results in the VGG16 system,and these results show that the migration can improve system performance of the proposed framework.Conclusion:The accuracy of CNN represented by VGG16 is as high as 91.25%,which is more accurate than traditional machine learningmodels.The F1 score of the three basic networks that join the secondary migration is close to 1.0,and the performance of the VGG16-based breast tumor CAD system is higher than Inception V3,and ResNet50. 展开更多
关键词 computer-aided diagnosis breast cancer VGG16 convolutional neural network magnetic resonance imaging
在线阅读 下载PDF
Analysis of Machine Learning Techniques Applied to the Classification of Masses and Microcalcification Clusters in Breast Cancer Computer-Aided Detection
7
作者 Edén A. Alanís-Reyes José L. Hernández-Cruz +3 位作者 Jesús S. Cepeda Camila Castro Hugo Terashima-Marín Santiago E. Conant-Pablos 《Journal of Cancer Therapy》 2012年第6期1020-1028,共9页
Breast cancer is one of the most common and deadliest types of cancer among women and early detection is of major importance to decrease mortality rates. Microcalcification clusters and masses are two major indicators... Breast cancer is one of the most common and deadliest types of cancer among women and early detection is of major importance to decrease mortality rates. Microcalcification clusters and masses are two major indicators of malignancy in the early stages of this disease, when mammography is typically used as the screening technology. Computer-Aided Diagnosis (CAD) systems can support the radiologists’ work, by performing a double-reading process, which provides a second opinion that the physician can take into account in the detection process. This paper presents a CAD model based on computer vision procedures for locating suspicious regions that are later analyzed by artificial neural networks, support vector machines and linear discriminant analysis, to classify them into benign or malignant, based on a set of features that are extracted from lesions to characterize their visual content. A genetic algorithm is used to find the subset of features that provide the greatest discriminant power. Our results show that the SVM presented the highest overall accuracy and specificity for classifying microcalcification clusters, while the NN outperformed the rest for mass-classification in the same parameters. Overall accuracy, sensitivity and specificity were measured. 展开更多
关键词 computer-aided DIAGNOSIS BREAST CANCER detection BREAST CANCER DIAGNOSIS Mass-Segmentation CALCIFICATION SEGMENTATION Digital Mammography
暂未订购
Computer-Aided Detection System on Tangled Roller
8
作者 闫贺庆 牛新文 王成焘 《Journal of Donghua University(English Edition)》 EI CAS 2004年第2期145-148,共4页
The mechanical-touched detector was used commonly in textile production limes. It has some defect with high false alarm rate, response delay and high maintenance cost. In order to overcome such defects, a new kind dev... The mechanical-touched detector was used commonly in textile production limes. It has some defect with high false alarm rate, response delay and high maintenance cost. In order to overcome such defects, a new kind device was developed and used to detect roller tangled in the production lines. It is based on image processing. The core algorithm was composed of Canny edge detection, removing interference, detection of perpendicularity line and detection of broken tow. After the four steps, the broken tow could be recognized quickly and correctly. The algorithm is robust and high efficiency. So, the detection device has characteristic of stable, quickly-response and low maintains cost. It can keep superiority with long lifespan even in more formidable conditions. It guarantees a safe and stable production condition. 展开更多
关键词 roller detection edge detection Hough transform canny edge detector
在线阅读 下载PDF
COMPUTER-AIDED DETECTION OF THE EPILEPTIC WAVES IN EEG:A REALIZED STRATEGY BY ADOPTING MULTI-METHOD
9
作者 Zhu Xin Wan Baikun +2 位作者 Lu Yangsheng Liu Hui Chen Cheng(Departnent of Biomedical Engineering, Tianjin University, Tianjin 300072, P.R.China) 《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第3期35-36,共2页
In this thesis, a strategy realizing the computer-aided detection (CAD) of the epileptic waves in EEG isintroduced. The expert criterion, continuous wavelet transformation, neural networks, and characteristic paramete... In this thesis, a strategy realizing the computer-aided detection (CAD) of the epileptic waves in EEG isintroduced. The expert criterion, continuous wavelet transformation, neural networks, and characteristic parametermeasuremente these modern signa1 processing weapons were synthesized togetLher to form a so-called multi-method.It was estimated that the advantages of all the powerful techniques could be exploited systematically. Therefore, theCAD’s capacities in the long-term monitoring, trCaAnent and control of epilepsy might be enhanced. In this strategy,the raw EEG signals were uniformed and the expelt criterion were applied to discard most of aItifacts in them at first,and then the signals were pre-processed by continuous wavelet transformation. Some characteristic parameters wereextracted from the raw signals and the pre-processed ones. Consequently groups of eighteen parameters were sent totrain or test BP networks. By applying this theme a correct-detection rate of 84.3% for spike and sharp waves, and88.9% for sPike and sharp slow waves were obtained. In the next step, some non-linear tools wtll also be equippedwith the CAD system. 展开更多
关键词 computer-aided detection (CAN) EEG EXPERT CRITERION wavelet transformation neural networks
暂未订购
Performance of Computer-Aided Detection Software in Tuberculosis Case Finding in Township Health Centers in China
10
作者 Xuefang Cao Boxuan Feng +10 位作者 Bin Zhang Dakuan Wang Jiang Du Yijun He Tonglei Guo Shouguo Pan Zisen Liu Jiaoxia Yan Qi Jin Lei Gao Henan Xin 《Chronic Diseases and Translational Medicine》 2025年第2期140-147,共8页
Background:Computer-aided detection(CAD)software has been introduced to automatically interpret digital chest X-rays.This study aimed to evaluate the performance of CAD software(JF CXR-1 v3.0,which was developed by a ... Background:Computer-aided detection(CAD)software has been introduced to automatically interpret digital chest X-rays.This study aimed to evaluate the performance of CAD software(JF CXR-1 v3.0,which was developed by a domestic Hi-tech enterprise)in tuberculosis(TB)case finding in China.Methods:In 2019,we conducted an internal evaluation of the performance of JF CXR-1 v3.0 by reading standard images annotated by a panel of experts.In 2020,using the reading results of chest X-rays by a panel of experts as the reference standard,we conducted an on-site prospective study to evaluate the performance of JF CXR-1 v3.0 and local radiologists in TB case finding in 13 township health centers in Zhongmu County,Henan Province.Results:Internal assessment results based on 277 standard images showed that JF CXR-1 v3.0 had a sensitivity of 85.94%(95%confidence interval[CI]:77.42%,94.45%)and a specificity of 74.65%(95%CI:68.81%,80.49%)to distinguish active TB from other imaging conditions.In the on-site evaluation phase,images from 3705 outpatients who underwent chest X-ray detection were read by JF CXR-1 v3.0 and local radiologists in parallel.The imaging diagnosis of local radiologists for active TB had a sensitivity of 32.89%(95%CI:22.33%,43.46%)and a specificity of 99.28%(95%CI:99.01%,99.56%),while JF CXR-1 v3.0 showed a significantly higher sensitivity of 92.11%(95%CI:86.04%,98.17%)(p<0.05)and maintained high specificity at 94.54%(95%CI:93.81%,95.28%).Conclusions:CAD software could play a positive role in improving the TB case finding capability of township health centers. 展开更多
关键词 artificial intelligence case finding chest X-ray computer-aided detection TUBERCULOSIS
原文传递
Colonic polyps: application value of computer-aided detection in computed tomographic colonography
11
作者 ZHANG Hui-mao GUO Wei +4 位作者 LIU Gui-feng AN Dong-hong GAO Shuo-hui SUN Li-bo YANG Hai-shan 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第3期380-384,共5页
Background Colonic polyps are frequently encountered in clinics. Computed tomographic colonography (CTC), as a painless and quick detection, has high values in clinics. In this study, we evaluated the application va... Background Colonic polyps are frequently encountered in clinics. Computed tomographic colonography (CTC), as a painless and quick detection, has high values in clinics. In this study, we evaluated the application value of computer-aided detection (CAD) in CTC detection of colonic polyps in the Chinese population.Methods CTC was performed with a GE 64-row multidetector computed tomography (MDCT) scanner. Data of 50 CTC patients (39 patients positive for at least one polyp of ≥0.5 cm in size and the other 11 patients negative by endoscopic detection) were retrospectively reviewed first without computer-aided detection (CAD) and then with CAD by four radiologists (two were experienced and another two inexperienced) blinded to colonoscopy findings. The sensitivity,specificity, positive predictive value, negative predictive value, and accuracy of detected colonic polyps, as well as the areas under the ROC curves (Az value) with and without CAD were calculated.Results CAD increased the overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of the colonic polyps detected by experienced and inexperienced readers. The sensitivity in detecting small polyps (5-9 mm) with CAD in experienced and inexperienced readers increased from 82% and 44% to 93% and 82%,respectively (P 〉0.05 and P 〈0.001). With the use of CAD, the overall false positive rate and false negative rate for the detection of polyps by experienced and inexperienced readers decreased in different degrees. Among 13 sessile polyps not detected by CAD, two were 〉1.0 cm, eleven were 5-9 mm in diameter, and nine were fiat-shaped lesions.Conclusions The application of CAD in combination with CTC can increase the ability to detect colonic polyps,particularly for inexperienced readers. However, CAD is of limited value for the detection of flat polyps. 展开更多
关键词 computed tomography COLONOGRAPHY computer-aided detection
原文传递
Unlocking the silent signals:Motor kinematics as a new frontier in early detection of mild cognitive impairment
12
作者 Takahiko Nagamine 《World Journal of Psychiatry》 2026年第1期1-6,共6页
The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests suc... The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions. 展开更多
关键词 Mild cognitive impairment Early detection Motor kinematics Gait analysis Handwriting analysis Digital biomarkers Machine learning
暂未订购
Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification 被引量:1
13
作者 M.Uvaneshwari M.Baskar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1811-1826,共16页
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ... The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods. 展开更多
关键词 Brain tumor machine learning SEGMENTATION computer-aided diagnosis skull stripping
在线阅读 下载PDF
Novel Computer-Aided Diagnosis System for the Early Detection of Alzheimer’s Disease
14
作者 Meshal Alharbi Shabana R.Ziyad 《Computers, Materials & Continua》 SCIE EI 2023年第3期5483-5505,共23页
Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to f... Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool. 展开更多
关键词 Alzheimer’s disease DEMENTIA mild cognitive impairment computer-aided diagnosis intelligent water drop algorithm random forest
暂未订购
Artificial intelligence for reducing missed detection of adenomas and polyps in colonoscopy:A systematic review and meta-analysis
15
作者 Sheng-Yu Wang Jia-Cheng Gao Shuo-Dong Wu 《World Journal of Gastroenterology》 2025年第21期122-134,共13页
BACKGROUND Colorectal cancer has a high incidence and mortality rate,and the effectiveness of routine colonoscopy largely depends on the endoscopist’s expertise.In recent years,computer-aided detection(CADe)systems h... BACKGROUND Colorectal cancer has a high incidence and mortality rate,and the effectiveness of routine colonoscopy largely depends on the endoscopist’s expertise.In recent years,computer-aided detection(CADe)systems have been increasingly integrated into colonoscopy to improve detection accuracy.However,while most studies have focused on adenoma detection rate(ADR)as the primary outcome,the more sensitive adenoma miss rate(AMR)has been less frequently analyzed.AIM To evaluate the effectiveness of CADe in colonoscopy and assess the advantages of AMR over ADR.METHODS A comprehensive literature search was conducted in PubMed,Embase,and the Cochrane Central Register of Controlled Trials using predefined search strategies to identify relevant studies published up to August 2,2024.Statistical analyses were performed to compare outcomes between groups,and potential publication bias was assessed using funnel plots.The quality of the included studies was evaluated using the Cochrane Risk of Bias tool and the Grading of Recommendations,Assessment,Development,and Evaluation approach.RESULTS Five studies comprising 1624 patients met the inclusion criteria.AMR was significantly lower in the CADe-assisted group than in the routine colonoscopy group(147/927,15.9%vs 345/960,35.9%;P<0.01).However,CADe did not provide a significant advantage in detecting advanced adenomas or lesions measuring 6-9 mm or≥10 mm.The polyp miss rate(PMR)was also lower in the CADe-assisted group[odds ratio(OR),0.35;95% confidence interval(CI):0.23-0.52;P<0.01].While the overall ADR did not differ significantly between groups,the ADR during the first-pass examination was higher in the CADe-assisted group(OR,1.37;95%CI:1.10-1.69;P=0.004).The level of evidence for the included randomized controlled trials was graded as moderate.CONCLUSION CADe can significantly reduce AMR and PMR while improving ADR during initial detection,demonstrating its potential to enhance colonoscopy performance.These findings highlight the value of CADe in improving the detection of colorectal neoplasms,particularly small and histologically distinct adenomas. 展开更多
关键词 Artificial intelligence computer-aided detection COLONOSCOPY NEOPLASMS Prevention and control
暂未订购
PD-YOLO:Colon Polyp Detection Model Based on Enhanced Small-Target Feature Extraction 被引量:1
16
作者 Yicong Yu Kaixin Lin +2 位作者 Jiajun Hong Rong-Guei Tsai Yuanzhi Huang 《Computers, Materials & Continua》 SCIE EI 2025年第1期913-928,共16页
In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a s... In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods. 展开更多
关键词 Polyp detection YOLOv7 SPD-Conv CBAM DECONVOLUTION
暂未订购
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8 被引量:2
17
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection UAV images detection small target detection YOLO
在线阅读 下载PDF
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:3
18
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 Machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
Establishment of a field visualization detection method for multiplex recombinase polymerase amplification combined with CRISPR/Cas12a in genetically modified crops 被引量:2
19
作者 YAN Jingying NI Liang +2 位作者 SHEN Xingyu LÜ Bingtao LI Yu 《浙江大学学报(农业与生命科学版)》 北大核心 2025年第3期391-401,共11页
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c... With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants. 展开更多
关键词 genetically modified crop recombinase polymerase amplification CRISPR/Cas12a field detection
在线阅读 下载PDF
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
20
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部